imkaushalpatel commited on
Commit
6355b2a
·
1 Parent(s): 96608c8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -0
app.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ # Images
5
+ torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/06/15/01/11/soccer-1457988_1280.jpg', 'soccer.jpg')
6
+ torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/11/21/14/31/vw-bus-1845719_1280.jpg', 'bus.jpg')
7
+ # Model
8
+ model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
9
+ def yolo(im, size=640):
10
+ g = (size / max(im.size)) # gain
11
+ im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
12
+ results = model(im) # inference
13
+ results.render() # updates results.imgs with boxes and labels
14
+ return Image.fromarray(results.imgs[0])
15
+ inputs = gr.inputs.Image(type='pil', label="Original Image")
16
+ outputs = gr.outputs.Image(type="pil", label="Output Image")
17
+ title = "YOLOv3"
18
+ description = "YOLOv3 Gradio demo for object detection. Upload an image or click an example image to use."
19
+ article = "<p style='text-align: center'>YOLOv3 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov3' target='_blank'>Source code</a> |<a href='https://apps.apple.com/app/id1452689527' target='_blank'>iOS App</a></p>"
20
+ examples = [['soccer.jpg'], ['bus.jpg']]
21
+ gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(
22
+ debug=True)