|
|
|
|
|
import torch |
|
import numpy as np |
|
import torch.nn as nn |
|
|
|
|
|
def init_image_coor(height, width): |
|
x_row = np.arange(0, width) |
|
x = np.tile(x_row, (height, 1)) |
|
x = x[np.newaxis, :, :] |
|
x = x.astype(np.float32) |
|
x = torch.from_numpy(x.copy()).cuda() |
|
u_u0 = x - width/2.0 |
|
|
|
y_col = np.arange(0, height) |
|
y = np.tile(y_col, (width, 1)).T |
|
y = y[np.newaxis, :, :] |
|
y = y.astype(np.float32) |
|
y = torch.from_numpy(y.copy()).cuda() |
|
v_v0 = y - height/2.0 |
|
return u_u0, v_v0 |
|
|
|
|
|
def depth_to_xyz(depth, focal_length): |
|
b, c, h, w = depth.shape |
|
u_u0, v_v0 = init_image_coor(h, w) |
|
x = u_u0 * depth / focal_length |
|
y = v_v0 * depth / focal_length |
|
z = depth |
|
pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) |
|
return pw |
|
|
|
|
|
def get_surface_normal(xyz, patch_size=3): |
|
|
|
x, y, z = torch.unbind(xyz, dim=3) |
|
x = torch.unsqueeze(x, 0) |
|
y = torch.unsqueeze(y, 0) |
|
z = torch.unsqueeze(z, 0) |
|
|
|
xx = x * x |
|
yy = y * y |
|
zz = z * z |
|
xy = x * y |
|
xz = x * z |
|
yz = y * z |
|
patch_weight = torch.ones((1, 1, patch_size, patch_size), requires_grad=False).cuda() |
|
xx_patch = nn.functional.conv2d(xx, weight=patch_weight, padding=int(patch_size / 2)) |
|
yy_patch = nn.functional.conv2d(yy, weight=patch_weight, padding=int(patch_size / 2)) |
|
zz_patch = nn.functional.conv2d(zz, weight=patch_weight, padding=int(patch_size / 2)) |
|
xy_patch = nn.functional.conv2d(xy, weight=patch_weight, padding=int(patch_size / 2)) |
|
xz_patch = nn.functional.conv2d(xz, weight=patch_weight, padding=int(patch_size / 2)) |
|
yz_patch = nn.functional.conv2d(yz, weight=patch_weight, padding=int(patch_size / 2)) |
|
ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch], |
|
dim=4) |
|
ATA = torch.squeeze(ATA) |
|
ATA = torch.reshape(ATA, (ATA.size(0), ATA.size(1), 3, 3)) |
|
eps_identity = 1e-6 * torch.eye(3, device=ATA.device, dtype=ATA.dtype)[None, None, :, :].repeat([ATA.size(0), ATA.size(1), 1, 1]) |
|
ATA = ATA + eps_identity |
|
x_patch = nn.functional.conv2d(x, weight=patch_weight, padding=int(patch_size / 2)) |
|
y_patch = nn.functional.conv2d(y, weight=patch_weight, padding=int(patch_size / 2)) |
|
z_patch = nn.functional.conv2d(z, weight=patch_weight, padding=int(patch_size / 2)) |
|
AT1 = torch.stack([x_patch, y_patch, z_patch], dim=4) |
|
AT1 = torch.squeeze(AT1) |
|
AT1 = torch.unsqueeze(AT1, 3) |
|
|
|
patch_num = 4 |
|
patch_x = int(AT1.size(1) / patch_num) |
|
patch_y = int(AT1.size(0) / patch_num) |
|
n_img = torch.randn(AT1.shape).cuda() |
|
overlap = patch_size // 2 + 1 |
|
for x in range(int(patch_num)): |
|
for y in range(int(patch_num)): |
|
left_flg = 0 if x == 0 else 1 |
|
right_flg = 0 if x == patch_num -1 else 1 |
|
top_flg = 0 if y == 0 else 1 |
|
btm_flg = 0 if y == patch_num - 1 else 1 |
|
at1 = AT1[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap, |
|
x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap] |
|
ata = ATA[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap, |
|
x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap] |
|
n_img_tmp, _ = torch.solve(at1, ata) |
|
|
|
n_img_tmp_select = n_img_tmp[top_flg * overlap:patch_y + top_flg * overlap, left_flg * overlap:patch_x + left_flg * overlap, :, :] |
|
n_img[y * patch_y:y * patch_y + patch_y, x * patch_x:x * patch_x + patch_x, :, :] = n_img_tmp_select |
|
|
|
n_img_L2 = torch.sqrt(torch.sum(n_img ** 2, dim=2, keepdim=True)) |
|
n_img_norm = n_img / n_img_L2 |
|
|
|
|
|
orient_mask = torch.sum(torch.squeeze(n_img_norm) * torch.squeeze(xyz), dim=2) > 0 |
|
n_img_norm[orient_mask] *= -1 |
|
return n_img_norm |
|
|
|
def get_surface_normalv2(xyz, patch_size=3): |
|
""" |
|
xyz: xyz coordinates |
|
patch: [p1, p2, p3, |
|
p4, p5, p6, |
|
p7, p8, p9] |
|
surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)] |
|
return: normal [h, w, 3, b] |
|
""" |
|
b, h, w, c = xyz.shape |
|
half_patch = patch_size // 2 |
|
xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device) |
|
xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :] |
|
xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :] |
|
xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :] |
|
xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :] |
|
xyz_horizon = xyz_left - xyz_right |
|
xyz_vertical = xyz_top - xyz_bottom |
|
|
|
xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :] |
|
xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :] |
|
xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :] |
|
xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :] |
|
xyz_horizon_in = xyz_left_in - xyz_right_in |
|
xyz_vertical_in = xyz_top_in - xyz_bottom_in |
|
|
|
n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3) |
|
n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3) |
|
|
|
|
|
orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0 |
|
n_img_1[orient_mask] *= -1 |
|
orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0 |
|
n_img_2[orient_mask] *= -1 |
|
|
|
n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True)) |
|
n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8) |
|
|
|
n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True)) |
|
n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8) |
|
|
|
|
|
n_img_aver = n_img1_norm + n_img2_norm |
|
n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True)) |
|
n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8) |
|
|
|
orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0 |
|
n_img_aver_norm[orient_mask] *= -1 |
|
n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0)) |
|
|
|
|
|
|
|
|
|
return n_img_aver_norm_out |
|
|
|
def surface_normal_from_depth(depth, focal_length, valid_mask=None): |
|
|
|
b, c, h, w = depth.shape |
|
focal_length = focal_length[:, None, None, None] |
|
depth_filter = nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1) |
|
depth_filter = nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1) |
|
xyz = depth_to_xyz(depth_filter, focal_length) |
|
sn_batch = [] |
|
for i in range(b): |
|
xyz_i = xyz[i, :][None, :, :, :] |
|
normal = get_surface_normalv2(xyz_i) |
|
sn_batch.append(normal) |
|
sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1)) |
|
mask_invalid = (~valid_mask).repeat(1, 3, 1, 1) |
|
sn_batch[mask_invalid] = 0.0 |
|
|
|
return sn_batch |
|
|
|
|
|
def vis_normal(normal): |
|
""" |
|
Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255] |
|
@para normal: surface normal, [h, w, 3], numpy.array |
|
""" |
|
n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True)) |
|
n_img_norm = normal / (n_img_L2 + 1e-8) |
|
normal_vis = n_img_norm * 127 |
|
normal_vis += 128 |
|
normal_vis = normal_vis.astype(np.uint8) |
|
return normal_vis |
|
|
|
def vis_normal2(normals): |
|
''' |
|
Montage of normal maps. Vectors are unit length and backfaces thresholded. |
|
''' |
|
x = normals[:, :, 0] |
|
y = normals[:, :, 1] |
|
z = normals[:, :, 2] |
|
backfacing = (z > 0) |
|
norm = np.sqrt(np.sum(normals**2, axis=2)) |
|
zero = (norm < 1e-5) |
|
x += 1.0; x *= 0.5 |
|
y += 1.0; y *= 0.5 |
|
z = np.abs(z) |
|
x[zero] = 0.0 |
|
y[zero] = 0.0 |
|
z[zero] = 0.0 |
|
normals[:, :, 0] = x |
|
normals[:, :, 1] = y |
|
normals[:, :, 2] = z |
|
return normals |
|
|
|
if __name__ == '__main__': |
|
import cv2, os |