Spaces:
Runtime error
Runtime error
imalexianne
commited on
Commit
•
d66b74a
1
Parent(s):
a05980a
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
@@ -7,21 +12,22 @@ import transformers
|
|
7 |
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification,TFAutoModelForSequenceClassification, pipeline
|
8 |
from scipy.special import softmax
|
9 |
from dotenv import load_dotenv, dotenv_values
|
10 |
-
# from huggingface_hub import login
|
11 |
-
|
12 |
from huggingface_hub import login
|
13 |
-
|
14 |
-
# notebook_login()
|
15 |
load_dotenv()
|
16 |
login(os.getenv("access_token"))
|
|
|
|
|
17 |
# Requirements
|
|
|
18 |
model_path = "imalexianne/distilbert-base-uncased"
|
|
|
19 |
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
-
#
|
25 |
def preprocess(text):
|
26 |
new_text = []
|
27 |
for x in text.split(" "):
|
@@ -38,22 +44,22 @@ def sentiment_analysis(text):
|
|
38 |
output = model(**encoded_input)
|
39 |
scores_ = output[0][0].detach().numpy()
|
40 |
scores_ = softmax(scores_)
|
41 |
-
|
42 |
# Format output dict of scores
|
43 |
labels = ["Negative", "Neutral", "Positive"]
|
44 |
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
45 |
-
|
46 |
return scores
|
47 |
|
48 |
|
49 |
# ---- Gradio app interface
|
50 |
app = gr.Interface(fn = sentiment_analysis,
|
51 |
-
inputs = gr.Textbox("Write here"),
|
52 |
outputs = "label",
|
53 |
title = "Sentiment Analysis of Tweets on COVID-19 Vaccines",
|
54 |
description = "Sentiment Analysis of text based on tweets about COVID-19 Vaccines using a fine-tuned 'distilbert-base-uncased' model",
|
55 |
-
|
56 |
examples = [["Covid vaccination has no positive impact"]]
|
57 |
)
|
58 |
|
59 |
-
app.launch(
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
from scipy.special import softmax
|
6 |
+
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
|
|
12 |
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification,TFAutoModelForSequenceClassification, pipeline
|
13 |
from scipy.special import softmax
|
14 |
from dotenv import load_dotenv, dotenv_values
|
|
|
|
|
15 |
from huggingface_hub import login
|
|
|
|
|
16 |
load_dotenv()
|
17 |
login(os.getenv("access_token"))
|
18 |
+
|
19 |
+
|
20 |
# Requirements
|
21 |
+
# huggingface_token = "" # Replace with your actual token
|
22 |
model_path = "imalexianne/distilbert-base-uncased"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
24 |
|
25 |
+
# tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
26 |
+
# tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased", revision="main")
|
27 |
+
config = AutoConfig.from_pretrained(model_path)
|
28 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
29 |
|
30 |
+
# Preprocessessing function
|
31 |
def preprocess(text):
|
32 |
new_text = []
|
33 |
for x in text.split(" "):
|
|
|
44 |
output = model(**encoded_input)
|
45 |
scores_ = output[0][0].detach().numpy()
|
46 |
scores_ = softmax(scores_)
|
47 |
+
|
48 |
# Format output dict of scores
|
49 |
labels = ["Negative", "Neutral", "Positive"]
|
50 |
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
51 |
+
|
52 |
return scores
|
53 |
|
54 |
|
55 |
# ---- Gradio app interface
|
56 |
app = gr.Interface(fn = sentiment_analysis,
|
57 |
+
inputs = gr.Textbox("Write your text here..."),
|
58 |
outputs = "label",
|
59 |
title = "Sentiment Analysis of Tweets on COVID-19 Vaccines",
|
60 |
description = "Sentiment Analysis of text based on tweets about COVID-19 Vaccines using a fine-tuned 'distilbert-base-uncased' model",
|
61 |
+
|
62 |
examples = [["Covid vaccination has no positive impact"]]
|
63 |
)
|
64 |
|
65 |
+
app.launch()
|