smoking / app.py
iain maitland
let's deploy to huggingface spaces
fba23ba
raw
history blame
635 Bytes
from fastai.vision.all import *
learn = load_learner('cig_detector_2.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
import gradio as gr
title = "Smoking Classifier"
description = "A smoking, not smoking classifier trained with fastai."
examples = ['smoking1.jpg', 'smoking2.jpg', 'not_smoking.jpg']
gr.Interface(title=title, description=description, examples=examples,fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)