Jonas
fix youtube embeed
c1bd891
import gradio as gr
from openfda_client import (
get_top_adverse_events,
get_drug_event_pair_frequency,
get_serious_outcomes,
get_time_series_data,
get_report_source_data
)
from plotting import (
create_bar_chart,
create_outcome_chart,
create_time_series_chart,
create_pie_chart,
create_placeholder_chart
)
import pandas as pd
# --- Formatting Functions ---
def format_pair_frequency_results(data: dict, drug_name: str, event_name: str) -> str:
"""Formats the results for the drug-event pair frequency tool."""
if "error" in data:
return f"An error occurred: {data['error']}"
results = data.get("meta", {}).get("results", {})
total_reports = results.get("total", 0)
total_for_drug = results.get("total_for_drug", 0)
percentage_string = ""
if total_for_drug > 0:
percentage = (total_reports / total_for_drug) * 100
percentage_string = (
f"\n\nThis combination accounts for **{percentage:.2f}%** of the **{total_for_drug:,}** "
f"total adverse event reports for '{drug_name.title()}' in the database."
)
result = (
f"Found **{total_reports:,}** reports for the combination of "
f"'{drug_name.title()}' and '{event_name.title()}'.{percentage_string}\n\n"
"**Source**: FDA FAERS via OpenFDA\n"
"**Disclaimer**: Spontaneous reports do not prove causation. Consult a healthcare professional."
)
return result
# --- Tool Functions ---
def top_adverse_events_tool(drug_name: str, top_n: int = 10, patient_sex: str = "all", min_age: int = 0, max_age: int = 120):
"""
MCP Tool: Finds the top reported adverse events for a given drug.
Args:
drug_name (str): The generic name of the drug is preferred! A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
top_n (int): The number of top adverse events to return.
patient_sex (str): The patient's sex to filter by.
min_age (int): The minimum age for the filter.
max_age (int): The maximum age for the filter.
Returns:
tuple: A Plotly figure, a Pandas DataFrame, and a summary string.
"""
if top_n is None:
top_n = 10
if patient_sex is None:
patient_sex = "all"
if min_age is None:
min_age = 0
if max_age is None:
max_age = 120
sex_code = None
if patient_sex == "Male":
sex_code = "1"
elif patient_sex == "Female":
sex_code = "2"
age_range = None
if min_age > 0 or max_age < 120:
age_range = (min_age, max_age)
data = get_top_adverse_events(drug_name, limit=top_n, patient_sex=sex_code, age_range=age_range)
if "error" in data:
error_message = f"An error occurred: {data['error']}"
return create_placeholder_chart(error_message), pd.DataFrame(), error_message
if "results" not in data or not data["results"]:
message = f"No adverse event data found for '{drug_name}'. The drug may not be in the database or it might be misspelled."
return create_placeholder_chart(message), pd.DataFrame(), message
chart = create_bar_chart(data, drug_name)
df = pd.DataFrame(data["results"])
df = df.rename(columns={"term": "Adverse Event", "count": "Report Count"})
total_reports = data.get("meta", {}).get("total_reports_for_query", 0)
if total_reports > 0:
df['Relative Frequency (%)'] = ((df['Report Count'] / total_reports) * 100).round(2)
else:
df['Relative Frequency (%)'] = 0.0
header = (
f"### Top {len(df)} Adverse Events for '{drug_name.title()}'\n"
f"Based on **{total_reports:,}** total reports matching the given filters.\n"
"**Source**: FDA FAERS via OpenFDA\n"
"**Disclaimer**: Spontaneous reports do not prove causation. Consult a healthcare professional."
)
return chart, df, header
def serious_outcomes_tool(drug_name: str, top_n: int = 6):
"""
MCP Tool: Finds the top reported serious outcomes for a given drug.
Args:
drug_name (str): The generic name of the drug is preferred. A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
top_n (int): The number of top serious outcomes to return.
Returns:
tuple: A Plotly figure, a Pandas DataFrame, and a summary string.
"""
if top_n is None:
top_n = 6
data = get_serious_outcomes(drug_name, limit=top_n)
if "error" in data:
error_message = f"An error occurred: {data['error']}"
return create_placeholder_chart(error_message), pd.DataFrame(), error_message
if "results" not in data or not data["results"]:
message = f"No serious outcome data found for '{drug_name}'. The drug may not be in the database or it might be misspelled."
return create_placeholder_chart(message), pd.DataFrame(), message
chart = create_outcome_chart(data, drug_name)
df = pd.DataFrame(data["results"])
df = df.rename(columns={"term": "Serious Outcome", "count": "Report Count"})
total_serious_reports = data.get("meta", {}).get("total_reports_for_query", 0)
if total_serious_reports > 0:
df['% of Serious Reports'] = ((df['Report Count'] / total_serious_reports) * 100).round(2)
else:
df['% of Serious Reports'] = 0.0
header = (
f"### Top {len(df)} Serious Outcomes for '{drug_name.title()}'\n"
f"Out of **{total_serious_reports:,}** total serious reports. "
"Note: a single report may be associated with multiple outcomes.\n"
"**Source**: FDA FAERS via OpenFDA\n"
"**Disclaimer**: Spontaneous reports do not prove causation. Consult a healthcare professional."
)
return chart, df, header
def drug_event_stats_tool(drug_name: str, event_name: str):
"""
MCP Tool: Gets the total number of reports for a specific drug and adverse event pair.
Args:
drug_name (str): The generic name of the drug is preferred. A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
event_name (str): The name of the adverse event to search for.
Returns:
str: A formatted string with the total count of reports.
"""
data = get_drug_event_pair_frequency(drug_name, event_name)
return format_pair_frequency_results(data, drug_name, event_name)
def time_series_tool(drug_name: str, event_name: str, aggregation: str):
"""
MCP Tool: Creates a time-series plot for a drug-event pair.
Args:
drug_name (str): The generic name of the drug is preferred. A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
event_name (str): The name of the adverse event.
aggregation (str): Time aggregation ('Yearly' or 'Quarterly').
Returns:
A Plotly figure.
"""
agg_code = 'Y' if aggregation == 'Yearly' else 'Q'
data = get_time_series_data(drug_name, event_name)
if "error" in data or not data.get("results"):
return create_placeholder_chart(f"No time-series data found for '{drug_name}' and '{event_name}'.")
chart = create_time_series_chart(data, drug_name, event_name, time_aggregation=agg_code)
return chart
def report_source_tool(drug_name: str, top_n: int = 5):
"""
MCP Tool: Creates a pie chart of report sources for a given drug.
Args:
drug_name (str): The generic name of the drug is preferred. A small sample of brand names (e.g., 'Tylenol') are converted to generic names for demonstration purposes.
top_n (int): The number of top sources to return.
Returns:
tuple: A Plotly figure, a Pandas DataFrame, and a summary string.
"""
if top_n is None:
top_n = 5
data = get_report_source_data(drug_name, limit=top_n)
if "error" in data:
error_message = f"An error occurred: {data['error']}"
return create_placeholder_chart(error_message), pd.DataFrame(), error_message
if not data or not data.get("results"):
message = f"No report source data found for '{drug_name}'."
return create_placeholder_chart(message), pd.DataFrame(), message
chart = create_pie_chart(data, drug_name)
df = pd.DataFrame(data['results'])
df = df.rename(columns={"term": "Source", "count": "Report Count"})
total_reports = data.get("meta", {}).get("total_reports_for_query", 0)
if total_reports > 0:
df['Percentage'] = ((df['Report Count'] / total_reports) * 100).round(2)
else:
df['Percentage'] = 0.0
header = (
f"### Report Sources for '{drug_name.title()}'\n"
f"Based on **{total_reports:,}** reports with source information."
)
return chart, df, header
# --- Gradio Interface ---
with open("gradio_readme.md", "r") as f:
readme_content = f.read()
with gr.Blocks(title="Medication Adverse-Event Explorer") as demo:
gr.Markdown("# Medication Adverse-Event Explorer")
with gr.Tabs():
with gr.TabItem("About"):
gr.HTML("""
<div style="display: flex; justify-content: center;">
<iframe width="560" height="315" src="https://www.youtube.com/embed/noGG-lQwn2U"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
</div>
""")
gr.Markdown(readme_content)
with gr.TabItem("Top Events"):
gr.Interface(
fn=top_adverse_events_tool,
inputs=[
gr.Textbox(
label="Drug Name",
info="Enter a brand or generic drug name (e.g., 'Aspirin', 'Lisinopril')."
),
gr.Slider(
5, 50,
value=10,
label="Number of Events to Show",
step=1
),
gr.Radio(
["All", "Male", "Female"],
label="Patient Sex",
value="All"
),
gr.Slider(
0, 120,
value=0,
label="Minimum Age",
step=1
),
gr.Slider(
0, 120,
value=120,
label="Maximum Age",
step=1
),
],
outputs=[
gr.Plot(label="Top Adverse Events Chart"),
gr.DataFrame(label="Top Adverse Events", interactive=False),
gr.Markdown()
],
title="Top Adverse Events by Drug",
description="Find the most frequently reported adverse events for a specific medication.",
examples=[["Lisinopril"], ["Ozempic"], ["Metformin"]],
allow_flagging="never",
)
with gr.TabItem("Serious Outcomes"):
gr.Interface(
fn=serious_outcomes_tool,
inputs=[
gr.Textbox(
label="Drug Name",
info="Enter a brand or generic drug name (e.g., 'Aspirin', 'Lisinopril')."
),
gr.Slider(1, 6, value=6, label="Number of Outcomes to Show", step=1),
],
outputs=[
gr.Plot(label="Top Serious Outcomes Chart"),
gr.DataFrame(label="Top Serious Outcomes", interactive=False),
gr.Markdown()
],
title="Serious Outcome Analysis",
description="Find the most frequently reported serious outcomes (e.g., hospitalization, death) for a specific medication.",
examples=[["Lisinopril"], ["Ozempic"], ["Metformin"]],
allow_flagging="never",
)
with gr.TabItem("Event Frequency"):
gr.Interface(
fn=drug_event_stats_tool,
inputs=[
gr.Textbox(label="Drug Name", info="e.g., 'Ibuprofen'"),
gr.Textbox(label="Adverse Event", info="e.g., 'Headache'")
],
outputs=[gr.Textbox(label="Report Count", lines=5)],
title="Drug/Event Pair Frequency",
description="Get the total number of reports for a specific drug and adverse event combination.",
examples=[["Lisinopril", "Cough"], ["Ozempic", "Nausea"]],
)
with gr.TabItem("Time-Series Trends"):
gr.Interface(
fn=time_series_tool,
inputs=[
gr.Textbox(label="Drug Name", info="e.g., 'Ibuprofen'"),
gr.Textbox(label="Adverse Event", info="e.g., 'Headache'"),
gr.Radio(["Yearly", "Quarterly"], label="Aggregation", value="Yearly")
],
outputs=[gr.Plot(label="Report Trends")],
title="Time-Series Trend Plotting",
description="Plot the number of adverse event reports over time for a specific drug-event pair.",
examples=[["Lisinopril", "Cough", "Yearly"], ["Ozempic", "Nausea", "Quarterly"]],
)
with gr.TabItem("Report Sources"):
gr.Interface(
fn=report_source_tool,
inputs=[
gr.Textbox(label="Drug Name", info="e.g., 'Aspirin', 'Lisinopril'"),
gr.Slider(1, 5, value=5, label="Number of Sources to Show", step=1),
],
outputs=[
gr.Plot(label="Report Source Breakdown"),
gr.DataFrame(label="Report Source Data", interactive=False),
gr.Markdown()
],
title="Report Source Breakdown",
description="Show a pie chart breaking down the source of the reports (e.g., Consumer, Physician).",
examples=[["Lisinopril"], ["Ibuprofen"]],
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch(mcp_server=True, server_name="0.0.0.0")