Update chatbot.py
Browse files- chatbot.py +2 -20
chatbot.py
CHANGED
@@ -4,22 +4,16 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from pinecone import Pinecone
|
6 |
|
7 |
-
device = 'cpu'
|
8 |
|
9 |
# Initialize Pinecone instance
|
10 |
-
pc = Pinecone(api_key='
|
11 |
-
|
12 |
-
# Check if the index exists; if not, create it
|
13 |
-
index_name = 'abstractive-question-answering'
|
14 |
-
index = pc.Index(index_name)
|
15 |
|
16 |
# Initialize FastAPI app
|
17 |
app = FastAPI()
|
18 |
|
19 |
# Initialize the models
|
20 |
def load_models():
|
21 |
-
print("Loading models...")
|
22 |
-
|
23 |
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
|
24 |
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
25 |
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
|
@@ -38,29 +32,17 @@ def predict(query: QueryInput):
|
|
38 |
xq = retriever.encode([query_text]).tolist()
|
39 |
xc = index.query(vector=xq, top_k=1, include_metadata=True)
|
40 |
|
41 |
-
# Check if 'matches' exists and is a list
|
42 |
if 'matches' in xc and isinstance(xc['matches'], list):
|
43 |
context = [m['metadata']['Output'] for m in xc['matches']]
|
44 |
context_str = " ".join(context)
|
45 |
formatted_query = f"answer the question: {query_text} context: {context_str}"
|
46 |
else:
|
47 |
-
# Handle the case where 'matches' isn't found or isn't in the expected format
|
48 |
context_str = ""
|
49 |
formatted_query = f"answer the question: {query_text} context: {context_str}"
|
50 |
|
51 |
# Generate answer using T5 model
|
52 |
-
output_text = context_str
|
53 |
-
if len(output_text.splitlines()) > 5:
|
54 |
-
return {"response": output_text}
|
55 |
-
|
56 |
-
if output_text.lower() == "none":
|
57 |
-
return {"response": "The topic is not covered in the student manual."}
|
58 |
-
|
59 |
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
|
60 |
ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
|
61 |
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
62 |
|
63 |
return {"response": answer}
|
64 |
-
|
65 |
-
# To run the server (use uvicorn when deploying):
|
66 |
-
# uvicorn chatbot:app --reload
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from pinecone import Pinecone
|
6 |
|
7 |
+
device = 'cpu'
|
8 |
|
9 |
# Initialize Pinecone instance
|
10 |
+
pc = Pinecone(api_key='your-pinecone-api-key')
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Initialize FastAPI app
|
13 |
app = FastAPI()
|
14 |
|
15 |
# Initialize the models
|
16 |
def load_models():
|
|
|
|
|
17 |
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
|
18 |
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
19 |
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
|
|
|
32 |
xq = retriever.encode([query_text]).tolist()
|
33 |
xc = index.query(vector=xq, top_k=1, include_metadata=True)
|
34 |
|
|
|
35 |
if 'matches' in xc and isinstance(xc['matches'], list):
|
36 |
context = [m['metadata']['Output'] for m in xc['matches']]
|
37 |
context_str = " ".join(context)
|
38 |
formatted_query = f"answer the question: {query_text} context: {context_str}"
|
39 |
else:
|
|
|
40 |
context_str = ""
|
41 |
formatted_query = f"answer the question: {query_text} context: {context_str}"
|
42 |
|
43 |
# Generate answer using T5 model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
|
45 |
ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
|
46 |
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
47 |
|
48 |
return {"response": answer}
|
|
|
|
|
|