shad_ml2_2 / app.py
ilyshi's picture
Update app.py
7ed1e45
raw
history blame
1.55 kB
import streamlit as st
import torch
import numpy as np
from transformers import TrainingArguments, \
Trainer, AutoTokenizer, DataCollatorWithPadding, \
AutoModelForSequenceClassification
categories = ['Biology', 'Computer science', 'Economics', 'Electrics', 'Finance',
'Math', 'Physics', 'Statistics']
labels = [i for i in range(len(categories))]
def print_probs(logits):
probs = torch.nn.functional.softmax(logits, dim=0).numpy()*100
ans = list(zip(probs,labels))
ans.sort(reverse=True)
sum = 0
i = 0
while sum <= 95:
prob, idx = ans[i]
text = categories[idx] + ": "+ str(np.round(prob,1)) + "%"
st.markdown(text)
sum+=prob
i+=1
def make_prediction(text):
tokenized_text = tokenizer(text, return_tensors='pt')
with torch.no_grad():
pred_logits = model(**tokenized_text).logits
st.markdown("Category probability:")
print_probs(pred_logits[0])
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8)
model_name = "trained_model2"
model_path = model_name + '.zip'
model.load_state_dict(
torch.load(
model_path,
map_location=torch.device("cpu")
)
)
st.markdown("## Hello, people!")
st.markdown("<img src='https://centroderecursosmarista.org/wp-content/uploads/2013/05/arvix.jpg'>", unsafe_allow_html=True)
text = st.text_area("Введите описание статьи")
make_prediction(text)