Spaces:
Sleeping
Sleeping
import torch | |
import math | |
import struct | |
import comfy.checkpoint_pickle | |
import safetensors.torch | |
import numpy as np | |
from PIL import Image | |
import logging | |
import itertools | |
def load_torch_file(ckpt, safe_load=False, device=None): | |
if device is None: | |
device = torch.device("cpu") | |
if ckpt.lower().endswith(".safetensors"): | |
sd = safetensors.torch.load_file(ckpt, device=device.type) | |
else: | |
if safe_load: | |
if not 'weights_only' in torch.load.__code__.co_varnames: | |
logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.") | |
safe_load = False | |
if safe_load: | |
pl_sd = torch.load(ckpt, map_location=device, weights_only=True) | |
else: | |
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle) | |
if "global_step" in pl_sd: | |
logging.debug(f"Global Step: {pl_sd['global_step']}") | |
if "state_dict" in pl_sd: | |
sd = pl_sd["state_dict"] | |
else: | |
sd = pl_sd | |
return sd | |
def save_torch_file(sd, ckpt, metadata=None): | |
if metadata is not None: | |
safetensors.torch.save_file(sd, ckpt, metadata=metadata) | |
else: | |
safetensors.torch.save_file(sd, ckpt) | |
def calculate_parameters(sd, prefix=""): | |
params = 0 | |
for k in sd.keys(): | |
if k.startswith(prefix): | |
params += sd[k].nelement() | |
return params | |
def state_dict_key_replace(state_dict, keys_to_replace): | |
for x in keys_to_replace: | |
if x in state_dict: | |
state_dict[keys_to_replace[x]] = state_dict.pop(x) | |
return state_dict | |
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False): | |
if filter_keys: | |
out = {} | |
else: | |
out = state_dict | |
for rp in replace_prefix: | |
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys()))) | |
for x in replace: | |
w = state_dict.pop(x[0]) | |
out[x[1]] = w | |
return out | |
def transformers_convert(sd, prefix_from, prefix_to, number): | |
keys_to_replace = { | |
"{}positional_embedding": "{}embeddings.position_embedding.weight", | |
"{}token_embedding.weight": "{}embeddings.token_embedding.weight", | |
"{}ln_final.weight": "{}final_layer_norm.weight", | |
"{}ln_final.bias": "{}final_layer_norm.bias", | |
} | |
for k in keys_to_replace: | |
x = k.format(prefix_from) | |
if x in sd: | |
sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x) | |
resblock_to_replace = { | |
"ln_1": "layer_norm1", | |
"ln_2": "layer_norm2", | |
"mlp.c_fc": "mlp.fc1", | |
"mlp.c_proj": "mlp.fc2", | |
"attn.out_proj": "self_attn.out_proj", | |
} | |
for resblock in range(number): | |
for x in resblock_to_replace: | |
for y in ["weight", "bias"]: | |
k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y) | |
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y) | |
if k in sd: | |
sd[k_to] = sd.pop(k) | |
for y in ["weight", "bias"]: | |
k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y) | |
if k_from in sd: | |
weights = sd.pop(k_from) | |
shape_from = weights.shape[0] // 3 | |
for x in range(3): | |
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] | |
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y) | |
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] | |
return sd | |
def clip_text_transformers_convert(sd, prefix_from, prefix_to): | |
sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32) | |
tp = "{}text_projection.weight".format(prefix_from) | |
if tp in sd: | |
sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp) | |
tp = "{}text_projection".format(prefix_from) | |
if tp in sd: | |
sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous() | |
return sd | |
UNET_MAP_ATTENTIONS = { | |
"proj_in.weight", | |
"proj_in.bias", | |
"proj_out.weight", | |
"proj_out.bias", | |
"norm.weight", | |
"norm.bias", | |
} | |
TRANSFORMER_BLOCKS = { | |
"norm1.weight", | |
"norm1.bias", | |
"norm2.weight", | |
"norm2.bias", | |
"norm3.weight", | |
"norm3.bias", | |
"attn1.to_q.weight", | |
"attn1.to_k.weight", | |
"attn1.to_v.weight", | |
"attn1.to_out.0.weight", | |
"attn1.to_out.0.bias", | |
"attn2.to_q.weight", | |
"attn2.to_k.weight", | |
"attn2.to_v.weight", | |
"attn2.to_out.0.weight", | |
"attn2.to_out.0.bias", | |
"ff.net.0.proj.weight", | |
"ff.net.0.proj.bias", | |
"ff.net.2.weight", | |
"ff.net.2.bias", | |
} | |
UNET_MAP_RESNET = { | |
"in_layers.2.weight": "conv1.weight", | |
"in_layers.2.bias": "conv1.bias", | |
"emb_layers.1.weight": "time_emb_proj.weight", | |
"emb_layers.1.bias": "time_emb_proj.bias", | |
"out_layers.3.weight": "conv2.weight", | |
"out_layers.3.bias": "conv2.bias", | |
"skip_connection.weight": "conv_shortcut.weight", | |
"skip_connection.bias": "conv_shortcut.bias", | |
"in_layers.0.weight": "norm1.weight", | |
"in_layers.0.bias": "norm1.bias", | |
"out_layers.0.weight": "norm2.weight", | |
"out_layers.0.bias": "norm2.bias", | |
} | |
UNET_MAP_BASIC = { | |
("label_emb.0.0.weight", "class_embedding.linear_1.weight"), | |
("label_emb.0.0.bias", "class_embedding.linear_1.bias"), | |
("label_emb.0.2.weight", "class_embedding.linear_2.weight"), | |
("label_emb.0.2.bias", "class_embedding.linear_2.bias"), | |
("label_emb.0.0.weight", "add_embedding.linear_1.weight"), | |
("label_emb.0.0.bias", "add_embedding.linear_1.bias"), | |
("label_emb.0.2.weight", "add_embedding.linear_2.weight"), | |
("label_emb.0.2.bias", "add_embedding.linear_2.bias"), | |
("input_blocks.0.0.weight", "conv_in.weight"), | |
("input_blocks.0.0.bias", "conv_in.bias"), | |
("out.0.weight", "conv_norm_out.weight"), | |
("out.0.bias", "conv_norm_out.bias"), | |
("out.2.weight", "conv_out.weight"), | |
("out.2.bias", "conv_out.bias"), | |
("time_embed.0.weight", "time_embedding.linear_1.weight"), | |
("time_embed.0.bias", "time_embedding.linear_1.bias"), | |
("time_embed.2.weight", "time_embedding.linear_2.weight"), | |
("time_embed.2.bias", "time_embedding.linear_2.bias") | |
} | |
def unet_to_diffusers(unet_config): | |
if "num_res_blocks" not in unet_config: | |
return {} | |
num_res_blocks = unet_config["num_res_blocks"] | |
channel_mult = unet_config["channel_mult"] | |
transformer_depth = unet_config["transformer_depth"][:] | |
transformer_depth_output = unet_config["transformer_depth_output"][:] | |
num_blocks = len(channel_mult) | |
transformers_mid = unet_config.get("transformer_depth_middle", None) | |
diffusers_unet_map = {} | |
for x in range(num_blocks): | |
n = 1 + (num_res_blocks[x] + 1) * x | |
for i in range(num_res_blocks[x]): | |
for b in UNET_MAP_RESNET: | |
diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b) | |
num_transformers = transformer_depth.pop(0) | |
if num_transformers > 0: | |
for b in UNET_MAP_ATTENTIONS: | |
diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b) | |
for t in range(num_transformers): | |
for b in TRANSFORMER_BLOCKS: | |
diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) | |
n += 1 | |
for k in ["weight", "bias"]: | |
diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k) | |
i = 0 | |
for b in UNET_MAP_ATTENTIONS: | |
diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b) | |
for t in range(transformers_mid): | |
for b in TRANSFORMER_BLOCKS: | |
diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b) | |
for i, n in enumerate([0, 2]): | |
for b in UNET_MAP_RESNET: | |
diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b) | |
num_res_blocks = list(reversed(num_res_blocks)) | |
for x in range(num_blocks): | |
n = (num_res_blocks[x] + 1) * x | |
l = num_res_blocks[x] + 1 | |
for i in range(l): | |
c = 0 | |
for b in UNET_MAP_RESNET: | |
diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b) | |
c += 1 | |
num_transformers = transformer_depth_output.pop() | |
if num_transformers > 0: | |
c += 1 | |
for b in UNET_MAP_ATTENTIONS: | |
diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b) | |
for t in range(num_transformers): | |
for b in TRANSFORMER_BLOCKS: | |
diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) | |
if i == l - 1: | |
for k in ["weight", "bias"]: | |
diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k) | |
n += 1 | |
for k in UNET_MAP_BASIC: | |
diffusers_unet_map[k[1]] = k[0] | |
return diffusers_unet_map | |
def swap_scale_shift(weight): | |
shift, scale = weight.chunk(2, dim=0) | |
new_weight = torch.cat([scale, shift], dim=0) | |
return new_weight | |
MMDIT_MAP_BASIC = { | |
("context_embedder.bias", "context_embedder.bias"), | |
("context_embedder.weight", "context_embedder.weight"), | |
("t_embedder.mlp.0.bias", "time_text_embed.timestep_embedder.linear_1.bias"), | |
("t_embedder.mlp.0.weight", "time_text_embed.timestep_embedder.linear_1.weight"), | |
("t_embedder.mlp.2.bias", "time_text_embed.timestep_embedder.linear_2.bias"), | |
("t_embedder.mlp.2.weight", "time_text_embed.timestep_embedder.linear_2.weight"), | |
("x_embedder.proj.bias", "pos_embed.proj.bias"), | |
("x_embedder.proj.weight", "pos_embed.proj.weight"), | |
("y_embedder.mlp.0.bias", "time_text_embed.text_embedder.linear_1.bias"), | |
("y_embedder.mlp.0.weight", "time_text_embed.text_embedder.linear_1.weight"), | |
("y_embedder.mlp.2.bias", "time_text_embed.text_embedder.linear_2.bias"), | |
("y_embedder.mlp.2.weight", "time_text_embed.text_embedder.linear_2.weight"), | |
("pos_embed", "pos_embed.pos_embed"), | |
("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift), | |
("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift), | |
("final_layer.linear.bias", "proj_out.bias"), | |
("final_layer.linear.weight", "proj_out.weight"), | |
} | |
MMDIT_MAP_BLOCK = { | |
("context_block.adaLN_modulation.1.bias", "norm1_context.linear.bias"), | |
("context_block.adaLN_modulation.1.weight", "norm1_context.linear.weight"), | |
("context_block.attn.proj.bias", "attn.to_add_out.bias"), | |
("context_block.attn.proj.weight", "attn.to_add_out.weight"), | |
("context_block.mlp.fc1.bias", "ff_context.net.0.proj.bias"), | |
("context_block.mlp.fc1.weight", "ff_context.net.0.proj.weight"), | |
("context_block.mlp.fc2.bias", "ff_context.net.2.bias"), | |
("context_block.mlp.fc2.weight", "ff_context.net.2.weight"), | |
("x_block.adaLN_modulation.1.bias", "norm1.linear.bias"), | |
("x_block.adaLN_modulation.1.weight", "norm1.linear.weight"), | |
("x_block.attn.proj.bias", "attn.to_out.0.bias"), | |
("x_block.attn.proj.weight", "attn.to_out.0.weight"), | |
("x_block.mlp.fc1.bias", "ff.net.0.proj.bias"), | |
("x_block.mlp.fc1.weight", "ff.net.0.proj.weight"), | |
("x_block.mlp.fc2.bias", "ff.net.2.bias"), | |
("x_block.mlp.fc2.weight", "ff.net.2.weight"), | |
} | |
def mmdit_to_diffusers(mmdit_config, output_prefix=""): | |
key_map = {} | |
depth = mmdit_config.get("depth", 0) | |
num_blocks = mmdit_config.get("num_blocks", depth) | |
for i in range(num_blocks): | |
block_from = "transformer_blocks.{}".format(i) | |
block_to = "{}joint_blocks.{}".format(output_prefix, i) | |
offset = depth * 64 | |
for end in ("weight", "bias"): | |
k = "{}.attn.".format(block_from) | |
qkv = "{}.x_block.attn.qkv.{}".format(block_to, end) | |
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset)) | |
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset)) | |
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset)) | |
qkv = "{}.context_block.attn.qkv.{}".format(block_to, end) | |
key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, offset)) | |
key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, offset, offset)) | |
key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, offset * 2, offset)) | |
for k in MMDIT_MAP_BLOCK: | |
key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0]) | |
map_basic = MMDIT_MAP_BASIC.copy() | |
map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.bias".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.bias".format(depth - 1), swap_scale_shift)) | |
map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.weight".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.weight".format(depth - 1), swap_scale_shift)) | |
for k in map_basic: | |
if len(k) > 2: | |
key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2]) | |
else: | |
key_map[k[1]] = "{}{}".format(output_prefix, k[0]) | |
return key_map | |
def repeat_to_batch_size(tensor, batch_size, dim=0): | |
if tensor.shape[dim] > batch_size: | |
return tensor.narrow(dim, 0, batch_size) | |
elif tensor.shape[dim] < batch_size: | |
return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size) | |
return tensor | |
def resize_to_batch_size(tensor, batch_size): | |
in_batch_size = tensor.shape[0] | |
if in_batch_size == batch_size: | |
return tensor | |
if batch_size <= 1: | |
return tensor[:batch_size] | |
output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device) | |
if batch_size < in_batch_size: | |
scale = (in_batch_size - 1) / (batch_size - 1) | |
for i in range(batch_size): | |
output[i] = tensor[min(round(i * scale), in_batch_size - 1)] | |
else: | |
scale = in_batch_size / batch_size | |
for i in range(batch_size): | |
output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)] | |
return output | |
def convert_sd_to(state_dict, dtype): | |
keys = list(state_dict.keys()) | |
for k in keys: | |
state_dict[k] = state_dict[k].to(dtype) | |
return state_dict | |
def safetensors_header(safetensors_path, max_size=100*1024*1024): | |
with open(safetensors_path, "rb") as f: | |
header = f.read(8) | |
length_of_header = struct.unpack('<Q', header)[0] | |
if length_of_header > max_size: | |
return None | |
return f.read(length_of_header) | |
def set_attr(obj, attr, value): | |
attrs = attr.split(".") | |
for name in attrs[:-1]: | |
obj = getattr(obj, name) | |
prev = getattr(obj, attrs[-1]) | |
setattr(obj, attrs[-1], value) | |
return prev | |
def set_attr_param(obj, attr, value): | |
return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False)) | |
def copy_to_param(obj, attr, value): | |
# inplace update tensor instead of replacing it | |
attrs = attr.split(".") | |
for name in attrs[:-1]: | |
obj = getattr(obj, name) | |
prev = getattr(obj, attrs[-1]) | |
prev.data.copy_(value) | |
def get_attr(obj, attr): | |
attrs = attr.split(".") | |
for name in attrs: | |
obj = getattr(obj, name) | |
return obj | |
def bislerp(samples, width, height): | |
def slerp(b1, b2, r): | |
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC''' | |
c = b1.shape[-1] | |
#norms | |
b1_norms = torch.norm(b1, dim=-1, keepdim=True) | |
b2_norms = torch.norm(b2, dim=-1, keepdim=True) | |
#normalize | |
b1_normalized = b1 / b1_norms | |
b2_normalized = b2 / b2_norms | |
#zero when norms are zero | |
b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0 | |
b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0 | |
#slerp | |
dot = (b1_normalized*b2_normalized).sum(1) | |
omega = torch.acos(dot) | |
so = torch.sin(omega) | |
#technically not mathematically correct, but more pleasing? | |
res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized | |
res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c) | |
#edge cases for same or polar opposites | |
res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] | |
res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1] | |
return res | |
def generate_bilinear_data(length_old, length_new, device): | |
coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) | |
coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear") | |
ratios = coords_1 - coords_1.floor() | |
coords_1 = coords_1.to(torch.int64) | |
coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1 | |
coords_2[:,:,:,-1] -= 1 | |
coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear") | |
coords_2 = coords_2.to(torch.int64) | |
return ratios, coords_1, coords_2 | |
orig_dtype = samples.dtype | |
samples = samples.float() | |
n,c,h,w = samples.shape | |
h_new, w_new = (height, width) | |
#linear w | |
ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) | |
coords_1 = coords_1.expand((n, c, h, -1)) | |
coords_2 = coords_2.expand((n, c, h, -1)) | |
ratios = ratios.expand((n, 1, h, -1)) | |
pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c)) | |
pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c)) | |
ratios = ratios.movedim(1, -1).reshape((-1,1)) | |
result = slerp(pass_1, pass_2, ratios) | |
result = result.reshape(n, h, w_new, c).movedim(-1, 1) | |
#linear h | |
ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) | |
coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) | |
coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) | |
ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new)) | |
pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c)) | |
pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c)) | |
ratios = ratios.movedim(1, -1).reshape((-1,1)) | |
result = slerp(pass_1, pass_2, ratios) | |
result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) | |
return result.to(orig_dtype) | |
def lanczos(samples, width, height): | |
images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] | |
images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] | |
images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] | |
result = torch.stack(images) | |
return result.to(samples.device, samples.dtype) | |
def common_upscale(samples, width, height, upscale_method, crop): | |
if crop == "center": | |
old_width = samples.shape[3] | |
old_height = samples.shape[2] | |
old_aspect = old_width / old_height | |
new_aspect = width / height | |
x = 0 | |
y = 0 | |
if old_aspect > new_aspect: | |
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) | |
elif old_aspect < new_aspect: | |
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) | |
s = samples[:,:,y:old_height-y,x:old_width-x] | |
else: | |
s = samples | |
if upscale_method == "bislerp": | |
return bislerp(s, width, height) | |
elif upscale_method == "lanczos": | |
return lanczos(s, width, height) | |
else: | |
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) | |
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): | |
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap))) | |
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None): | |
dims = len(tile) | |
output = torch.empty([samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])), device=output_device) | |
for b in range(samples.shape[0]): | |
s = samples[b:b+1] | |
out = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device) | |
out_div = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device) | |
for it in itertools.product(*map(lambda a: range(0, a[0], a[1] - overlap), zip(s.shape[2:], tile))): | |
s_in = s | |
upscaled = [] | |
for d in range(dims): | |
pos = max(0, min(s.shape[d + 2] - overlap, it[d])) | |
l = min(tile[d], s.shape[d + 2] - pos) | |
s_in = s_in.narrow(d + 2, pos, l) | |
upscaled.append(round(pos * upscale_amount)) | |
ps = function(s_in).to(output_device) | |
mask = torch.ones_like(ps) | |
feather = round(overlap * upscale_amount) | |
for t in range(feather): | |
for d in range(2, dims + 2): | |
m = mask.narrow(d, t, 1) | |
m *= ((1.0/feather) * (t + 1)) | |
m = mask.narrow(d, mask.shape[d] -1 -t, 1) | |
m *= ((1.0/feather) * (t + 1)) | |
o = out | |
o_d = out_div | |
for d in range(dims): | |
o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2]) | |
o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2]) | |
o += ps * mask | |
o_d += mask | |
if pbar is not None: | |
pbar.update(1) | |
output[b:b+1] = out/out_div | |
return output | |
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None): | |
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar) | |
PROGRESS_BAR_ENABLED = True | |
def set_progress_bar_enabled(enabled): | |
global PROGRESS_BAR_ENABLED | |
PROGRESS_BAR_ENABLED = enabled | |
PROGRESS_BAR_HOOK = None | |
def set_progress_bar_global_hook(function): | |
global PROGRESS_BAR_HOOK | |
PROGRESS_BAR_HOOK = function | |
class ProgressBar: | |
def __init__(self, total): | |
global PROGRESS_BAR_HOOK | |
self.total = total | |
self.current = 0 | |
self.hook = PROGRESS_BAR_HOOK | |
def update_absolute(self, value, total=None, preview=None): | |
if total is not None: | |
self.total = total | |
if value > self.total: | |
value = self.total | |
self.current = value | |
if self.hook is not None: | |
self.hook(self.current, self.total, preview) | |
def update(self, value): | |
self.update_absolute(self.current + value) | |