Spaces:
Sleeping
Sleeping
import nodes | |
import torch | |
import comfy.utils | |
import comfy.sd | |
import folder_paths | |
import comfy_extras.nodes_model_merging | |
class ImageOnlyCheckpointLoader: | |
def INPUT_TYPES(s): | |
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), | |
}} | |
RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE") | |
FUNCTION = "load_checkpoint" | |
CATEGORY = "loaders/video_models" | |
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): | |
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) | |
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) | |
return (out[0], out[3], out[2]) | |
class SVD_img2vid_Conditioning: | |
def INPUT_TYPES(s): | |
return {"required": { "clip_vision": ("CLIP_VISION",), | |
"init_image": ("IMAGE",), | |
"vae": ("VAE",), | |
"width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}), | |
"motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}), | |
"fps": ("INT", {"default": 6, "min": 1, "max": 1024}), | |
"augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}) | |
}} | |
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
RETURN_NAMES = ("positive", "negative", "latent") | |
FUNCTION = "encode" | |
CATEGORY = "conditioning/video_models" | |
def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level): | |
output = clip_vision.encode_image(init_image) | |
pooled = output.image_embeds.unsqueeze(0) | |
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) | |
encode_pixels = pixels[:,:,:,:3] | |
if augmentation_level > 0: | |
encode_pixels += torch.randn_like(pixels) * augmentation_level | |
t = vae.encode(encode_pixels) | |
positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]] | |
negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]] | |
latent = torch.zeros([video_frames, 4, height // 8, width // 8]) | |
return (positive, negative, {"samples":latent}) | |
class VideoLinearCFGGuidance: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "sampling/video_models" | |
def patch(self, model, min_cfg): | |
def linear_cfg(args): | |
cond = args["cond"] | |
uncond = args["uncond"] | |
cond_scale = args["cond_scale"] | |
scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1)) | |
return uncond + scale * (cond - uncond) | |
m = model.clone() | |
m.set_model_sampler_cfg_function(linear_cfg) | |
return (m, ) | |
class VideoTriangleCFGGuidance: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "sampling/video_models" | |
def patch(self, model, min_cfg): | |
def linear_cfg(args): | |
cond = args["cond"] | |
uncond = args["uncond"] | |
cond_scale = args["cond_scale"] | |
period = 1.0 | |
values = torch.linspace(0, 1, cond.shape[0], device=cond.device) | |
values = 2 * (values / period - torch.floor(values / period + 0.5)).abs() | |
scale = (values * (cond_scale - min_cfg) + min_cfg).reshape((cond.shape[0], 1, 1, 1)) | |
return uncond + scale * (cond - uncond) | |
m = model.clone() | |
m.set_model_sampler_cfg_function(linear_cfg) | |
return (m, ) | |
class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave): | |
CATEGORY = "_for_testing" | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"clip_vision": ("CLIP_VISION",), | |
"vae": ("VAE",), | |
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} | |
def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None): | |
comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo) | |
return {} | |
NODE_CLASS_MAPPINGS = { | |
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader, | |
"SVD_img2vid_Conditioning": SVD_img2vid_Conditioning, | |
"VideoLinearCFGGuidance": VideoLinearCFGGuidance, | |
"VideoTriangleCFGGuidance": VideoTriangleCFGGuidance, | |
"ImageOnlyCheckpointSave": ImageOnlyCheckpointSave, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)", | |
} | |