comf2 / ComfyUI /comfy /sd3_clip.py
ilya94prok's picture
Upload 400 files
97b9880 verified
raw
history blame
6.61 kB
from comfy import sd1_clip
from comfy import sdxl_clip
from transformers import T5TokenizerFast
import comfy.t5
import torch
import os
import comfy.model_management
import logging
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
class SDT5XXLTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None):
super().__init__(embedding_directory=embedding_directory, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
class SDT5XXLModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, **kwargs):
super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, **kwargs)
class SD3Tokenizer:
def __init__(self, embedding_directory=None):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
return self.clip_g.untokenize(token_weight_pair)
class SD3ClipModel(torch.nn.Module):
def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None):
super().__init__()
self.dtypes = set()
if clip_l:
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False)
self.dtypes.add(dtype)
else:
self.clip_l = None
if clip_g:
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype)
self.dtypes.add(dtype)
else:
self.clip_g = None
if t5:
if dtype_t5 is None:
dtype_t5 = dtype
elif comfy.model_management.dtype_size(dtype_t5) > comfy.model_management.dtype_size(dtype):
dtype_t5 = dtype
if not comfy.model_management.supports_cast(device, dtype_t5):
dtype_t5 = dtype
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5)
self.dtypes.add(dtype_t5)
else:
self.t5xxl = None
logging.debug("Created SD3 text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}".format(clip_l, clip_g, t5, dtype_t5))
def set_clip_options(self, options):
if self.clip_l is not None:
self.clip_l.set_clip_options(options)
if self.clip_g is not None:
self.clip_g.set_clip_options(options)
if self.t5xxl is not None:
self.t5xxl.set_clip_options(options)
def reset_clip_options(self):
if self.clip_l is not None:
self.clip_l.reset_clip_options()
if self.clip_g is not None:
self.clip_g.reset_clip_options()
if self.t5xxl is not None:
self.t5xxl.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_l = token_weight_pairs["l"]
token_weight_pairs_g = token_weight_pairs["g"]
token_weight_pars_t5 = token_weight_pairs["t5xxl"]
lg_out = None
pooled = None
out = None
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
if self.clip_l is not None:
lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
else:
l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())
if self.clip_g is not None:
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
if lg_out is not None:
lg_out = torch.cat([lg_out, g_out], dim=-1)
else:
lg_out = torch.nn.functional.pad(g_out, (768, 0))
else:
g_out = None
g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())
if lg_out is not None:
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
out = lg_out
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
if self.t5xxl is not None:
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5)
if lg_out is not None:
out = torch.cat([lg_out, t5_out], dim=-2)
else:
out = t5_out
if out is None:
out = torch.zeros((1, 77, 4096), device=comfy.model_management.intermediate_device())
if pooled is None:
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
return out, pooled
def load_sd(self, sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
return self.clip_g.load_sd(sd)
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
return self.clip_l.load_sd(sd)
else:
return self.t5xxl.load_sd(sd)
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None):
class SD3ClipModel_(SD3ClipModel):
def __init__(self, device="cpu", dtype=None):
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype)
return SD3ClipModel_