Spaces:
Runtime error
Runtime error
import dill | |
import json | |
import streamlit as st | |
import os | |
from haystack.utils import convert_files_to_docs | |
from haystack.schema import Answer | |
from haystack.document_stores import InMemoryDocumentStore | |
from haystack.pipelines import ExtractiveQAPipeline | |
from haystack.nodes import FARMReader, TfidfRetriever | |
import logging | |
from markdown import markdown | |
from annotated_text import annotation | |
from streamlit_lottie import st_lottie | |
st.set_page_config(page_title="QA-project", page_icon="📇") | |
os.environ['TOKENIZERS_PARALLELISM'] = "false" | |
DATA_DIR = './dataset' | |
NAMES_DICT_PATH = 'mod_names_dict.pkl' | |
DOCS_PATH = os.path.join(DATA_DIR, 'all_docs_36838.pkl') | |
LOTTIE_PATH = './img/108423-search-for-documents.json' | |
PROG_TITLE = "Научные кейсы" | |
PROG_SUBTITLE = "Рекомендации по существующим в компании компонентам цифровых продуктов для решения новых бизнес-задач" | |
# Adjust to a question that you would like users to see in the search bar when they load the UI: | |
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "Что делает Домашняя бухгалтерия?") | |
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "Домашняя бухгалтерия позволяет вести счета в разных валютах") | |
def load_dict(path): | |
with open(path, "rb") as f: | |
loaded = dill.load(f) | |
return loaded | |
def get_lottie(path): | |
with open(path, 'r', errors='ignore') as f: | |
lottie_data = json.load(f) | |
return lottie_data | |
def load_and_write_data(document_store): | |
with open(DOCS_PATH, "rb") as f: | |
docs = dill.load(f) | |
document_store.write_documents(docs) | |
def get_doc_reg_id(result): | |
if result.get("reg_id", None): | |
reg_id = result["reg_id"] | |
return reg_id | |
return None | |
# Haystack Components | |
document_store = InMemoryDocumentStore() # use_bm25=True | |
load_and_write_data(document_store) | |
retriever = TfidfRetriever(document_store=document_store) | |
reader = FARMReader(model_name_or_path="DeepPavlov/rubert-base-cased-sentence", | |
use_gpu=False, | |
num_processes=1) | |
pipeline = ExtractiveQAPipeline(reader, retriever) | |
def set_state_if_absent(key, value): | |
if key not in st.session_state: | |
st.session_state[key] = value | |
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP) | |
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP) | |
set_state_if_absent("results", None) | |
set_state_if_absent("predictions", None) | |
def reset_results(*args): | |
st.session_state.results = None | |
# Streamlit App | |
lottie_data = get_lottie(LOTTIE_PATH) | |
img, title= st.columns([2,3]) | |
with img: | |
st_lottie(lottie_data) #, height=350 | |
with title: | |
st.title(PROG_TITLE) | |
st.subheader(PROG_SUBTITLE) | |
st.markdown(""" | |
Это демонстрационная версия сервиса поисковой системы программных продуктов с использованием технологии | |
[Haystack Extractive QA Pipeline](https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) | |
и [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) | |
Чтобы испытать сервис можно задавать вопросы в свободной форме по функционалу программных продуктов. | |
""", unsafe_allow_html=True) | |
question = st.text_input("", value=st.session_state.question, max_chars=100, on_change=reset_results) | |
mod_names_dict = load_dict(NAMES_DICT_PATH) | |
def ask_question(question): | |
prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}) | |
answers = prediction["answers"] | |
results = [] | |
for answer in answers: | |
answer = answer.to_dict() | |
if answer.get("answer", None): | |
document = [doc for doc in prediction["documents"] if (doc.to_dict()["id"] == answer["document_id"])][0] | |
results.append( | |
{ | |
"context": "..." + answer["context"] + "...", | |
"answer": answer.get("answer", None), | |
"source": answer["meta"]["name"] if answer["meta"].get("name", None) else answer["meta"]['url'], | |
"relevance": round(answer["score"] * 100, 2), | |
"document": document.content, | |
"doc_score": document.score, | |
"reg_id": document.meta["reg_id"], | |
"offset_start_in_doc": answer["offsets_in_document"][0]["start"], | |
"_raw": answer, | |
} | |
) | |
else: | |
results.append( | |
{ | |
"context": None, | |
"answer": None, | |
"document": None, | |
"relevance": round(answer["score"] * 100, 2), | |
"_raw": answer, | |
} | |
) | |
return results, prediction | |
if question: | |
with st.spinner("🕰️ Производится семантический поиск по информационной базе ..."): | |
try: | |
msg = 'Asked ' + question | |
logging.info(msg) | |
st.session_state.results, st.session_state.predictions = ask_question(question) | |
except Exception as e: | |
logging.exception(e) | |
if st.session_state.results: | |
st.write('## Результаты') | |
for count, result in enumerate(st.session_state.results): | |
if result["answer"]: | |
answer, context = result["answer"], result["document"] | |
start_idx = context.find(result["context"]) | |
end_idx = start_idx + len(result["context"]) | |
reg_id = get_doc_reg_id(result) | |
module_info = '' | |
if reg_id: | |
module_name = mod_names_dict.get(reg_id, None) | |
if module_name: | |
module_info = f"**Наименование модуля/программы: :orange[{module_name}]**" | |
else: | |
module_info = f"Наименование модуля/программы отсутствует!" | |
st.markdown(f"{module_info} - **Релевантность:** {result['relevance']}") | |
st.write( | |
markdown(context[:start_idx] + str(annotation(body=result["context"], label="ANSWER", background="#ff700f", color='#ffffff')) + context[end_idx:]), | |
unsafe_allow_html=True, | |
) | |
st.markdown(f"**Источник:** {result['source']}") | |
else: | |
st.info( | |
"🤔 Поисковая система не справилась с Вашим запросом. Попробуйте его переформулировать!" | |
) | |