License_Plate / app.py
ilhamsyahids's picture
Upload folder using huggingface_hub
c5a77dc verified
from paddleocr import PaddleOCR
from PIL import Image
import json
import gradio as gr
import numpy as np
import cv2
import torch
model = torch.hub.load('ultralytics/yolov5', 'custom', path='./best_Plate.pt') # local model
def get_random_color():
c = tuple(np.random.randint(0, 256, 3).tolist())
return c
def draw_ocr_bbox(image, boxes, colors):
print(colors)
box_num = len(boxes)
for i in range(box_num):
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, colors[i], 2)
return image
def inference(img: Image.Image, lang, confidence):
ocr = PaddleOCR(use_angle_cls=True, lang=lang, use_gpu=False)
# img_path = img.name
det_img = model(img)
det_croppeds = det_img.crop(save=False)
img_render = det_img.render()[0]
if len(det_croppeds) > 0:
img = det_croppeds[0]['im']
img = Image.fromarray(img)
img2np = np.array(img)
results = ocr.ocr(img2np, cls=True)
result = results[0]
if result == None:
return img_render, None, None
image = img.convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
final_result = [dict(boxes=box, txt=txt, score=score, _c=get_random_color()) for box, txt, score in zip(boxes, txts, scores)]
final_result = [item for item in final_result if item['score'] > confidence]
im_show = draw_ocr_bbox(image, [item['boxes'] for item in final_result], [item['_c'] for item in final_result])
im_show = Image.fromarray(im_show)
data = [[json.dumps(item['boxes']), round(item['score'], 3), item['txt']] for item in final_result]
return img_render, im_show, data
title = 'License Plate'
description = 'Demo License Plate Recognition'
examples = [
# ['example_imgs/example.jpg','en', 0.5],
]
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
if __name__ == '__main__':
demo = gr.Interface(
inference,
[
gr.Image(type='pil', label='Input'),
gr.Dropdown(choices=['en', 'ar'], value='en', label='Language'),
gr.Slider(0.1, 1, 0.5, step=0.1, label='Confidence Threshold')
],
[
gr.Image(type='pil', label='License Plate Detection'),
gr.Image(type='pil', label='License Plate'),
gr.Dataframe(headers=[ 'bbox', 'score', 'text'], label='Result'),
],
title=title,
description=description,
# examples=examples,
css=css,
)
demo.queue(max_size=10)
demo.launch(debug=True, server_name="0.0.0.0")