Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import fitz # PyMuPDF | |
| import tika | |
| import torch | |
| from fastapi import FastAPI | |
| from transformers import pipeline | |
| from PIL import Image | |
| from io import BytesIO | |
| from starlette.responses import RedirectResponse | |
| from tika import parser | |
| from openpyxl import load_workbook | |
| # Initialize Tika for DOCX & PPTX parsing (Ensure Java is installed) | |
| tika.initVM() | |
| # Initialize FastAPI | |
| app = FastAPI() | |
| # Load models | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=device) | |
| image_captioning_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") | |
| ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"} | |
| # β Function to Validate File Type | |
| def validate_file_type(file): | |
| if hasattr(file, "name"): | |
| ext = file.name.split(".")[-1].lower() | |
| if ext not in ALLOWED_EXTENSIONS: | |
| return f"β Unsupported file format: {ext}" | |
| return None | |
| return "β Invalid file format!" | |
| # β Extract Text from PDF | |
| def extract_text_from_pdf(file): | |
| with fitz.open(file.name) as doc: | |
| return "\n".join([page.get_text() for page in doc]) | |
| # β Extract Text from DOCX & PPTX using Tika | |
| def extract_text_with_tika(file): | |
| return parser.from_file(file.name)["content"] | |
| # β Extract Text from Excel | |
| def extract_text_from_excel(file): | |
| wb = load_workbook(file.name, data_only=True) | |
| text = [] | |
| for sheet in wb.worksheets: | |
| for row in sheet.iter_rows(values_only=True): | |
| text.append(" ".join(str(cell) for cell in row if cell)) | |
| return "\n".join(text) | |
| # β Truncate Long Text for Model | |
| def truncate_text(text, max_length=2048): | |
| return text[:max_length] if len(text) > max_length else text | |
| # β Answer Questions from Image or Document | |
| def answer_question(file, question: str): | |
| if isinstance(file, np.ndarray): # Image Processing | |
| image = Image.fromarray(file) | |
| caption = image_captioning_pipeline(image)[0]['generated_text'] | |
| response = qa_pipeline(f"Question: {question}\nContext: {caption}") | |
| return response[0]["generated_text"] | |
| validation_error = validate_file_type(file) | |
| if validation_error: | |
| return validation_error | |
| file_ext = file.name.split(".")[-1].lower() | |
| # Extract Text from Supported Documents | |
| if file_ext == "pdf": | |
| text = extract_text_from_pdf(file) | |
| elif file_ext in ["docx", "pptx"]: | |
| text = extract_text_with_tika(file) | |
| elif file_ext == "xlsx": | |
| text = extract_text_from_excel(file) | |
| else: | |
| return "β Unsupported file format!" | |
| if not text: | |
| return "β οΈ No text extracted from the document." | |
| truncated_text = truncate_text(text) | |
| response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}") | |
| return response[0]["generated_text"] | |
| # β Gradio Interface (Separate File & Image Inputs) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## π AI-Powered Document & Image QA") | |
| with gr.Row(): | |
| file_input = gr.File(label="Upload Document") | |
| image_input = gr.Image(label="Upload Image") | |
| question_input = gr.Textbox(label="Ask a Question", placeholder="What is this document about?") | |
| answer_output = gr.Textbox(label="Answer") | |
| submit_btn = gr.Button("Get Answer") | |
| submit_btn.click(answer_question, inputs=[file_input, question_input], outputs=answer_output) | |
| # β Mount Gradio with FastAPI | |
| app = gr.mount_gradio_app(app, demo, path="/") | |
| def home(): | |
| return RedirectResponse(url="/") | |