Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -70,7 +70,7 @@ from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
|
| 70 |
import os
|
| 71 |
import shutil
|
| 72 |
from PIL import Image
|
| 73 |
-
from transformers import ViltProcessor, ViltForQuestionAnswering
|
| 74 |
from gtts import gTTS
|
| 75 |
import torch
|
| 76 |
import tempfile
|
|
@@ -82,25 +82,6 @@ app = FastAPI()
|
|
| 82 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 83 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 84 |
|
| 85 |
-
# Load GPT model to rewrite answers (Phi-1.5)
|
| 86 |
-
gpt_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5")
|
| 87 |
-
gpt_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5")
|
| 88 |
-
|
| 89 |
-
def rewrite_answer(question, short_answer):
|
| 90 |
-
prompt = f"Question: {question}\nShort Answer: {short_answer}\nFull Sentence:"
|
| 91 |
-
inputs = gpt_tokenizer(prompt, return_tensors="pt")
|
| 92 |
-
with torch.no_grad():
|
| 93 |
-
outputs = gpt_model.generate(
|
| 94 |
-
**inputs,
|
| 95 |
-
max_new_tokens=50,
|
| 96 |
-
do_sample=True,
|
| 97 |
-
top_p=0.9,
|
| 98 |
-
temperature=0.7,
|
| 99 |
-
pad_token_id=gpt_tokenizer.eos_token_id
|
| 100 |
-
)
|
| 101 |
-
generated = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 102 |
-
return generated.split("Full Sentence:")[-1].strip()
|
| 103 |
-
|
| 104 |
def answer_question_from_image(image, question):
|
| 105 |
if image is None or not question.strip():
|
| 106 |
return "Please upload an image and ask a question.", None
|
|
@@ -111,18 +92,15 @@ def answer_question_from_image(image, question):
|
|
| 111 |
predicted_id = outputs.logits.argmax(-1).item()
|
| 112 |
short_answer = vqa_model.config.id2label[predicted_id]
|
| 113 |
|
| 114 |
-
# Rewrite short answer to full sentence
|
| 115 |
-
full_answer = rewrite_answer(question, short_answer)
|
| 116 |
-
|
| 117 |
try:
|
| 118 |
-
tts = gTTS(text=
|
| 119 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
| 120 |
tts.save(tmp.name)
|
| 121 |
audio_path = tmp.name
|
| 122 |
except Exception as e:
|
| 123 |
-
return f"Answer: {
|
| 124 |
|
| 125 |
-
return
|
| 126 |
|
| 127 |
def process_image_question(image: Image.Image, question: str):
|
| 128 |
answer, audio_path = answer_question_from_image(image, question)
|
|
@@ -139,7 +117,7 @@ gui = gr.Interface(
|
|
| 139 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
| 140 |
],
|
| 141 |
title="🧠 Image QA with Voice",
|
| 142 |
-
description="Upload an image and ask a question. You'll get
|
| 143 |
)
|
| 144 |
|
| 145 |
app = gr.mount_gradio_app(app, gui, path="/")
|
|
|
|
| 70 |
import os
|
| 71 |
import shutil
|
| 72 |
from PIL import Image
|
| 73 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
| 74 |
from gtts import gTTS
|
| 75 |
import torch
|
| 76 |
import tempfile
|
|
|
|
| 82 |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 83 |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
def answer_question_from_image(image, question):
|
| 86 |
if image is None or not question.strip():
|
| 87 |
return "Please upload an image and ask a question.", None
|
|
|
|
| 92 |
predicted_id = outputs.logits.argmax(-1).item()
|
| 93 |
short_answer = vqa_model.config.id2label[predicted_id]
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
try:
|
| 96 |
+
tts = gTTS(text=short_answer)
|
| 97 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
| 98 |
tts.save(tmp.name)
|
| 99 |
audio_path = tmp.name
|
| 100 |
except Exception as e:
|
| 101 |
+
return f"Answer: {short_answer}\n\n⚠️ Audio generation error: {e}", None
|
| 102 |
|
| 103 |
+
return short_answer, audio_path
|
| 104 |
|
| 105 |
def process_image_question(image: Image.Image, question: str):
|
| 106 |
answer, audio_path = answer_question_from_image(image, question)
|
|
|
|
| 117 |
gr.Audio(label="Answer (Audio)", type="filepath")
|
| 118 |
],
|
| 119 |
title="🧠 Image QA with Voice",
|
| 120 |
+
description="Upload an image and ask a question. You'll get an answer spoken out loud."
|
| 121 |
)
|
| 122 |
|
| 123 |
app = gr.mount_gradio_app(app, gui, path="/")
|