Commit
·
d2d695e
1
Parent(s):
e960ea7
Update app.py
Browse files
app.py
CHANGED
@@ -142,10 +142,10 @@ def predict_sales(input_data, input_df):
|
|
142 |
numeric_columns = [i for i in columns if i not in categoric_columns]
|
143 |
scaled_num = scaler.fit_transform(input_df[numeric_columns])
|
144 |
encoded_cat = encoder.transform(input_df[categoric_columns])
|
145 |
-
scaled_num_df = pd.DataFrame(scaled_num, columns=numeric_columns)
|
146 |
-
encoded_cat_df = pd.DataFrame(encoded_cat, columns=categoric_columns)
|
147 |
-
input_data = pd.concat([scaled_num_df, encoded_cat_df], axis=1)
|
148 |
-
|
149 |
# convert input_data to a numpy array before flattening to convert it back to a 2D array
|
150 |
input_data = input_data.to_numpy()
|
151 |
prediction = model.predict(input_data.flatten().reshape(1, -1))
|
|
|
142 |
numeric_columns = [i for i in columns if i not in categoric_columns]
|
143 |
scaled_num = scaler.fit_transform(input_df[numeric_columns])
|
144 |
encoded_cat = encoder.transform(input_df[categoric_columns])
|
145 |
+
# scaled_num_df = pd.DataFrame(scaled_num, columns=numeric_columns)
|
146 |
+
# encoded_cat_df = pd.DataFrame(encoded_cat, columns=categoric_columns)
|
147 |
+
# input_data = pd.concat([scaled_num_df, encoded_cat_df], axis=1)
|
148 |
+
input_data = pd.concat([scaled_num, encoded_cat], axis=1)
|
149 |
# convert input_data to a numpy array before flattening to convert it back to a 2D array
|
150 |
input_data = input_data.to_numpy()
|
151 |
prediction = model.predict(input_data.flatten().reshape(1, -1))
|