|
|
|
import streamlit as st |
|
import os |
|
import pickle |
|
import numpy as np |
|
import pandas as pd |
|
import re |
|
from pathlib import Path |
|
from PIL import Image |
|
from category_encoders.binary import BinaryEncoder |
|
from sklearn.preprocessing import StandardScaler |
|
|
|
|
|
st.set_page_config(page_title= "Sales Prediction Forecasting", page_icon= ":heavy_dollar_sign:", layout= "wide", initial_sidebar_state= "auto") |
|
|
|
|
|
st.title("Grocery Store Sales Time Series Model Prediction") |
|
|
|
|
|
@st.cache_resource |
|
def load_data(relative_path): |
|
data= pd.read_csv(relative_path, index_col= 0) |
|
|
|
return data |
|
|
|
|
|
|
|
|
|
|
|
rpath = r"merged_train_data.csv" |
|
data = load_data(rpath) |
|
|
|
|
|
|
|
|
|
model = pickle.load(open("model.pkl", "rb")) |
|
encoder = pickle.load(open("encoder.pkl", "rb")) |
|
scaler = pickle.load(open("scaler.pkl", "rb")) |
|
|
|
|
|
header = st.container() |
|
dataset = st.container() |
|
features_and_output = st.container() |
|
|
|
|
|
|
|
|
|
|
|
st.sidebar.header("Brief overview of the Columns") |
|
st.sidebar.markdown(""" |
|
- **store_nbr** identifies the store at which the products are sold. |
|
- **family** identifies the type of product sold. |
|
- **sales** is the total sales for a product family at a particular store at a given date. Fractional values are possible since products can be sold in fractional units(1.5 kg of cheese, for instance, as opposed to 1 bag of chips). |
|
- **onpromotion** gives the total number of items in a product family that were being promoted at a store at a given date. |
|
- **date** is the date on which a transaction / sale was made |
|
- **city** is the city in which the store is located |
|
- **state** is the state in which the store is located |
|
- **store_type** is the type of store, based on Corporation Favorita's own type system |
|
- **cluster** is a grouping of similar stores. |
|
- **oil_price** is the daily oil price |
|
""") |
|
|
|
|
|
with dataset: |
|
if dataset.checkbox("Preview the dataset"): |
|
dataset.write(data.head()) |
|
dataset.write("Further information will preview when take a look at the sidebar") |
|
dataset.write("---") |
|
|
|
|
|
|
|
|
|
|
|
image = Image.open(r"beautiful image.png") |
|
|
|
|
|
form = st.form(key="information", clear_on_submit=True) |
|
|
|
|
|
with header: |
|
header.write("This an application to build a model that more accurately predicts the unit sales for thousands of items sold at different Favorita stores") |
|
|
|
header.image(image) |
|
|
|
header.write("---") |
|
|
|
|
|
|
|
|
|
|
|
with features_and_output: |
|
features_and_output.subheader("Inputs") |
|
features_and_output.write("This section captures your input to be used in predictions") |
|
|
|
left_col, mid_col, right_col = features_and_output.columns(3) |
|
|
|
|
|
with form: |
|
left_col.markdown("***Combined data on Product and Transaction***") |
|
date = left_col.date_input("Select a date:") |
|
family = left_col.selectbox("Product family:", options= sorted(list(data["family"].unique()))) |
|
onpromotion = left_col.number_input("Number of products on promotion:", min_value= data["onpromotion"].min(), value= data["onpromotion"].min()) |
|
city = left_col.selectbox("City:", options= sorted(set(data["city"]))) |
|
|
|
mid_col.markdown("***Data on Location and type***") |
|
store_nbr = mid_col.selectbox("Store number:", options= sorted(set(data["store_nbr"]))) |
|
type_x = mid_col.radio("type_x:", options= sorted(set(data["type_x"])), horizontal= True) |
|
type_y = mid_col.radio("type_y:", options= sorted(set(data["type_y"])), horizontal= True) |
|
cluster = mid_col.select_slider("Store cluster:", options= sorted(set(data["cluster"]))) |
|
state = mid_col.selectbox("State:", options= sorted(set(data["state"]))) |
|
|
|
right_col.markdown("***Data on Economical Factors***") |
|
oil_price = right_col.number_input("Oil price:", min_value= data["oil_price"].min(), value= data["oil_price"].min()) |
|
|
|
|
|
submitted = form.form_submit_button(label= "Submit button") |
|
|
|
if submitted: |
|
with features_and_output: |
|
input_features = { |
|
"date":[date], |
|
"store_nbr": [store_nbr], |
|
"family": [family], |
|
"onpromotion": [onpromotion], |
|
"city": [city], |
|
"state": [state], |
|
"type_x": [type_x], |
|
"cluster":[cluster], |
|
"oil_price": [oil_price], |
|
"type_y": [type_y], |
|
} |
|
|
|
|
|
|
|
|
|
def predict_sales(input_data, input_df): |
|
|
|
categoric_columns = ['family', 'city', 'state', 'type_y', 'type_x'] |
|
columns = list(input_df.columns) |
|
numeric_columns = [i for i in columns if i not in categoric_columns] |
|
scaled_num = scaler.fit_transform(input_df[numeric_columns]) |
|
encoded_cat = encoder.transform(input_df[categoric_columns]) |
|
input_data = pd.concat([scaled_num, encoded_cat], axis=1) |
|
|
|
input_data = input_data.to_numpy() |
|
prediction = model.predict(input_data.flatten().reshape(1, -1)) |
|
return prediction |
|
|
|
|
|
input_dict = { |
|
'store_nbr': store_nbr, |
|
'cluster': cluster, |
|
'city': city, |
|
'state': state, |
|
'family': family, |
|
'type_x': type_x, |
|
'type_y': type_y, |
|
'onpromotion': onpromotion, |
|
'oil_price': oil_price, |
|
'date' : date |
|
} |
|
input_df = pd.DataFrame([input_dict]) |
|
|
|
|
|
@st.cache_resource |
|
def getDateFeatures(df): |
|
df['date'] = pd.to_datetime(df['date'], errors='coerce') |
|
df['month'] = df['date'].dt.month |
|
df['day_of_month'] = df['date'].dt.day |
|
df['day_of_year'] = df['date'].dt.dayofyear |
|
df['week_of_year'] = df['date'].dt.isocalendar().week |
|
df['week_of_year'] = df['week_of_year'].astype(float) |
|
df['day_of_week'] = df['date'].dt.dayofweek |
|
df['year'] = df['date'].dt.year |
|
df["is_weekend"] = np.where(df['day_of_week'] > 4, 1, 0) |
|
df['is_month_start'] = df['date'].dt.is_month_start.astype(int) |
|
df['quarter'] = df['date'].dt.quarter |
|
df['is_month_end'] = df['date'].dt.is_month_end.astype(int) |
|
df['is_quarter_start'] = df['date'].dt.is_quarter_start.astype(int) |
|
df['is_quarter_end'] = df['date'].dt.is_quarter_end.astype(int) |
|
df['is_year_start'] = df['date'].dt.is_year_start.astype(int) |
|
df['is_year_end'] = df['date'].dt.is_year_end.astype(int) |
|
|
|
df["season"] = np.where(df.month.isin([12,1,2]), 0, 1) |
|
df["season"] = np.where(df.month.isin([6,7,8]), 2, df["season"]) |
|
df["season"] = pd.Series(np.where(df.month.isin([9, 10, 11]), 3, df["season"])).astype("int8") |
|
df['pay_day'] = np.where((df['day_of_month']==15) | (df['is_month_end']==1), 1, 0) |
|
df['earthquake_impact'] = np.where(df['date'].isin( |
|
pd.date_range(start='2016-04-16', end='2016-12-31', freq='D')), 1, 0) |
|
|
|
return df |
|
input_df = getDateFeatures(input_df) |
|
input_df = input_df.drop(columns= ['date'], axis=1) |
|
|
|
|
|
if st.button('Predict'): |
|
prediction = predict_sales(input_df.values, input_df) |
|
st.success('The predicted sales amount is $' + str(round(prediction[0],2))) |
|
|
|
|
|
|
|
footer = st.expander("**Subsequent Information**") |
|
with footer: |
|
if footer.button("Special Thanks"): |
|
footer.markdown("*We want to express our appreciation and gratitude to Emmanuel,Racheal, Mavies and Richard for their great insights and contributions!*") |