Commit
·
891311d
1
Parent(s):
a9711de
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ tokenizer = AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_fake_news_b
|
|
11 |
@st.cache_resource
|
12 |
def detect_fake_news(text):
|
13 |
# Load the pipeline.
|
14 |
-
|
15 |
|
16 |
# Predict the sentiment.
|
17 |
prediction = pipeline(text)
|
@@ -59,7 +59,7 @@ unsafe_allow_html=True
|
|
59 |
if text:
|
60 |
label, score = detect_fake_news(text)
|
61 |
print(label, score)
|
62 |
-
if label == "
|
63 |
st.error(f"The text is likely to be fake news with a confidence score of {score*100:.2f}%!")
|
64 |
else:
|
65 |
st.success(f"The text is likely to be genuine with a confidence score of {score*100:.2f}%!")
|
|
|
11 |
@st.cache_resource
|
12 |
def detect_fake_news(text):
|
13 |
# Load the pipeline.
|
14 |
+
model = transformers.pipeline("text-classification", model=model, tokenizer=tokenizer)
|
15 |
|
16 |
# Predict the sentiment.
|
17 |
prediction = pipeline(text)
|
|
|
59 |
if text:
|
60 |
label, score = detect_fake_news(text)
|
61 |
print(label, score)
|
62 |
+
if label == "LABEL_1":
|
63 |
st.error(f"The text is likely to be fake news with a confidence score of {score*100:.2f}%!")
|
64 |
else:
|
65 |
st.success(f"The text is likely to be genuine with a confidence score of {score*100:.2f}%!")
|