ikoghoemmanuell's picture
Update app/main.py
093cf05 verified
from fastapi import FastAPI
from pydantic import BaseModel
import pandas as pd
import pickle
import uvicorn
from sklearn.preprocessing import StandardScaler, QuantileTransformer
import category_encoders as ce
# Call the app
app = FastAPI(title="Product Demand Prediction API")
# Load the model
with open("model.pkl", "rb") as f:
model = pickle.load(f)
# Define columns
categorical_cols = ['center_id', 'meal_id', 'emailer_for_promotion', 'homepage_featured', 'city_code', 'region_code', 'center_type', 'category', 'cuisine']
numeric_cols = ['week', 'base_price', 'discount', 'op_area']
# Fit transformers
encoder = ce.BinaryEncoder(drop_invariant=False, return_df=True)
quantile_transformer = QuantileTransformer(output_distribution='normal')
scaler = StandardScaler()
scaler.set_output(transform="pandas")
# Define your predict function
def predict(df, endpoint="simple"):
# Preprocess input data
df_cat = encoder.fit_transform(df[categorical_cols])
df_num_quantile = quantile_transformer.fit_transform(df[numeric_cols])
df_num_quantile = pd.DataFrame(df_num_quantile, columns=numeric_cols)
df_num_scaled = scaler.fit_transform(df_num_quantile)
# Concatenate encoded categorical and scaled numerical data
preprocessed_df = pd.concat([df_num_scaled, df_cat], axis=1)
# Ensure the DataFrame has all the columns that the model was trained on
model_columns = preprocessed_df.columns.tolist()
preprocessed_df = preprocessed_df.reindex(columns=model_columns, fill_value=0)
# Prediction
prediction = model.predict(preprocessed_df) # Make predictions using the pre-trained model
response = []
for num_orders in prediction:
# Convert NumPy float to Python native float
num_orders = int(num_orders)
# Create a response for each prediction with the predicted number of orders
output = {
"predicted_num_orders": num_orders
}
response.append(output) # Add the response to the list of responses
return response # Return the list of responses
class Demand(BaseModel):
week: int
center_id: str
meal_id: str
base_price: float
emailer_for_promotion: int
homepage_featured: int
discount: float
city_code: str
region_code: str
center_type: str
op_area: float
category: str
cuisine: str
class Demands(BaseModel):
all_demands: list[Demand]
@classmethod
def return_list_of_dict(cls, demands: "Demands"):
demand_list = []
for demand in demands.all_demands: # for each item in all_demands
demand_dict = demand.dict() # convert to a dictionary
demand_list.append(demand_dict) # add it to the empty list called demand_list
return demand_list
# Endpoints
# Root Endpoint
@app.get("/")
def root():
return {"message": "Welcome to the Product Demand Prediction API! This API provides endpoints for predicting product demand based on input data."}
# Prediction endpoint
@app.post("/predict")
def predict_demand(demand: Demand):
# Make prediction
data = pd.DataFrame(demand.dict(), index=[0])
predicted_demand = predict(df=data)
return predicted_demand
# Multiple Prediction Endpoint
@app.post("/predict_multiple")
def predict_demand_for_multiple_demands(demands: Demands):
"""Make prediction with the passed data"""
data = pd.DataFrame(Demands.return_list_of_dict(demands))
predicted_demand = predict(df=data, endpoint="multi")
return {"predicted_demand": predicted_demand}
if __name__ == "__main__":
uvicorn.run("main:app", reload=True)