Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
device = "cuda:0" | |
model = pipeline("text-classification", "iknow-lab/ko-flan-zero-v0-0731", device=device) | |
model.tokenizer.truncation_side = 'left' | |
def inference(input, instruction, labels): | |
instruction = f"{input} [SEP] {instruction}" | |
inputs = model.tokenizer([instruction] * len(labels), labels, truncation=True, padding=True, return_tensors="pt").to(device) | |
scores = model.model(**inputs).logits.squeeze(1).softmax(-1).tolist() | |
output = dict(zip(labels, scores)) | |
print(instruction) | |
print(output) | |
return output | |
def greet(content, instruction, labels): | |
labels = labels.split(",") | |
output = inference(content, instruction, labels) | |
return output | |
content = gr.TextArea(label="μ λ ₯ λ΄μ©") | |
instruction = gr.Textbox(label="μ§μλ¬Έ") | |
labels = gr.Textbox(label="λΌλ²¨(μΌνλ‘ κ΅¬λΆ)") | |
examples = [ | |
["μμ μλ μ£Όλ§λ§λ€ κ·Ήμ₯μ λλ¬κ°λλ° μμλ μ’ μκ°λ νΈμ΄μμ", "λκΈ μ£Όμ λ₯Ό λΆλ₯νμΈμ", "μν,λλΌλ§,κ²μ,μμ€"], | |
["μΈμ²λ° KTXμ κ΄λ ¨νβμ‘λμ 볡ν©νμΉμΌν°κ°βμ¬μ€μβ무μ°,βλ¨μ μ² λΒ·λ²μ€ μμ£Ό νμΉμμ€λ‘βλ§λ€μ΄μ§λ€.βμ΄ λλ¬Έμ μΈμ²μμ μΈμ²λ° KTXβκΈ°μ μ μ΅μ»€μμ€μΈ 볡ν©νμΉμΌν°λ₯Ό ν΅ν μΈκ·Όβμ§μβκ²½μ βνμ±νλ₯Όβμ΄λ€λΈλ€λ κ³νμ μ°¨μ§μ΄ λΆκ°νΌνλ€.", "κ²½μ μ κΈμ μ μΈ λ΄μ€μΈκ°μ?", "μ,μλμ"], | |
["λ§μ§λ§μλ kν 곡μ°λ³΄κ³ μ’μ μΆμ΅ λ¨μμΌλ©΄ μ’κ² λ€μ","μμ€μ΄ ν¬ν¨λμ΄μλμ?", "μμ€μ΄ μμ΅λλ€,μμ€μ΄ μμ΅λλ€"], | |
] | |
gr.Interface(fn=greet, | |
inputs=[content, instruction, labels], | |
outputs=gr.Label(), | |
examples=examples).launch() # server_name="0.0.0.0",server_port=7860) |