ijundi's picture
continue based on saved index
bb7f044
import json
import os
from dataclasses import dataclass, field
from typing import List, Optional, Dict
import numpy as np
import pandas as pd
import streamlit as st
from huggingface_hub import HfFileSystem
import streamlit.components.v1 as components
@dataclass
class Field:
type: str
title: str
name: str = None
mandatory: bool = True
# if value of field is in the list of those values, makes following siblings mandatory
following_mandatory_values: list = False
help: Optional[str] = None
children: Optional[List['Field']] = None
other_params: Optional[Dict[str, object]] = field(default_factory=lambda: {})
# Function to get user ID from URL
def get_param_from_url(param):
user_id = st.query_params.get(param, "")
return user_id
HF_TOKEN = os.environ.get("HF_TOKEN_WRITE")
print("is none?", HF_TOKEN is None)
hf_fs = HfFileSystem(token=HF_TOKEN)
########################################################################################
# CHANGE THE FOLLOWING VARIABLES ACCORDING TO YOUR NEEDS
input_repo_path = 'datasets/ijundi/mod-gen-eval-test'
output_repo_path = 'datasets/ijundi/mod-gen-eval-test'
to_annotate_file_name = 'all_annotation_data_{phase}.csv' # CSV file to annotate
COLS_TO_SAVE = ['id', 'comment id', 'type', 'dataset', 'batch']
agreement_labels = ['strongly disagree', 'disagree', 'neither agree nor disagree', 'agree', 'strongly agree']
quality_labels = ['very poor', 'poor', 'acceptable', 'good', 'very good']
default_labels = agreement_labels
# consent_text = 'By taking part in this study you agree that you read all the details in [the consent form](https://someurl.com) and that you give your consent to participate in the study.'
consent_text = '''
## Consent Form
You will be asked to take part in a research study. Before you decide to take part in this study, it is important that you understand why the study is being done and what it involves. Please read the following information carefully.
________________________________________________________________________________________
Project title: Moderation Properties\\
Researchers: I. Jundi, E.M. Vecchi, C. Quensel, N. Falk, G. Lapesa\\
Institute: Institute for Machine Speech Processing (IMS)\\
University: University of Stuttgart\\
Contact: iman.jundi@ims.uni-stuttgart.de
_________________________________________________________________________________________
### Description of the research study
In this study, we investigate the various properties of online moderation that aims to facilitate a productive discussion. The annotators' task is to evaluate and score various properties of a reply comment.
The intended use of the results of this study includes an analysis as well as processed versions of the collected data in the context of a publicly available scientific publication.
**Time required:** Your participation will take up to an estimated 2 hour. The time required may vary on an individual basis.
**Risks and benefits:** The risks to your participation in this online survey are those associated with basic computer tasks, including boredom, fatigue, mild stress, or breach of confidentiality. Some of the topics discussed in the online posts to be annotated may include violence, suicide or rape. The only benefit to you is the learning experience from participating in a research study. The benefit to society is the contribution to scientific knowledge
**Compensation:** You will be compensated for participating in this study. If you are interested, we will also be more than happy to share more information about our research with you.
**Voluntary participation:** Your participation in this study is voluntary. It is your decision whether or not to participate in this study. If you decide to participate in this study, you will be asked to confirm this consent form ("I agree."). Even after signing the consent form, you can withdraw from participation at any time and without giving any reason. Partial data will not be analysed.
**Confidentiality:** Your responses to this experiment will be anonymous. Please do not share any information that can be used to identify you. The researcher(s) will make every effort to maintain your confidentiality.
**Contact:** If at any time you have questions about this study or would like to report any adverse effects due to this study, please contact the researcher(s).
**Trigger Warning:** The texts included in this study are produced in an online debate forum and some topics that are discussed, how they are discussed, and user perspectives may be uncomfortable or sensitive. First, all texts included here do not represent the views of the researchers conducting the study. Secondly, we provide the option [described in detail in the guidelines provided in the next step] to avoid having to annotate any instance that is problematic or uncomfortable for the annotator without penalty of compensation.
### Consent:
Please indicate, in the box below, that you are at least 18 years old, have read and understood this consent form, are comfortable using the English language to complete the survey, and you agree to participate in this online research survey.
- *I am age 18 or older.*
- *I have read this consent form or had it read to me.*
- *I am comfortable using the English language to participate in this survey.*
- *I agree to participate in this research and I want to continue with the survey.*
'''
guidelines_text = 'Please read and keep <a href="https://tinyurl.com/mod-gen-guidelines">the guidelines</a> in mind!'
study_code = 'C1FVXAYN'
# failed_sanity_check_code = 'C102EK63' # screened-out code
failed_sanity_check_code = 'C15RGLJA'
redirect_url = f'https://app.prolific.com/submissions/complete?cfc={study_code}'
annotation_guidelines_fields: List[Field] = [
Field(name="annotation_guidelines", type="radio", title="Did you read the guidelines?", mandatory=True,
other_params={'labels': ['Yes, in detail, and I understand the study',
'Yes, in detail, but still confused',
'Yes, I skimmed it',
'I will read it later',
'No, not interested in reading them',
'I can not open the link',
],
'accepted_values': [0]}),
]
intro_fields: List[Field] = [
Field(name="intro_user_goals", type="text", title="As a user, what are your goals/objectives when commenting about a topic?"),
Field(name="intro_experience", type="text", title="What do you feel contributes to a good experience for the users/discussion?"),
Field(name="intro_valuable_comment", type="text", title="What makes a comment or contribution valuable?"),
Field(name="intro_bad_comment", type="text", title="What makes a comment or contribution of poor quality, unconstructive or detrimental to the discussion?"),
Field(name="intro_moderation_goals", type="text", title="As a user, what properties does a helpful moderator comment have?"),
]
fields: List[Field] = [
Field(name="id", type="input_col", title="**Sample ID:**"),
Field(name="type", type="input_col", title="**Topic:**"),
Field(name="comment parent content", type="input_col", title="**Preceding Comment:**"),
Field(name="comment content", type="input_col", title="**Reply Comment:**"),
# FieldDict(name="generated content", type="input_col", title="**Generated:**"),
Field(type="container", title="", children=[
Field(name="reply_fitting", type="likert_radio",
title="Is the reply comment **fitting and does it make sense** as a reply to the preceding comment?"),
Field(name="actions_clear", type="likert_radio",
title="**Actions clarity**: Does the reply make it clear what actions need to be done **by the current user or the community** at larget? e.g. explaining, providing another perspective, sharing an experience"),
]),
# Field(type="expander",
# title="Expand and fill-out this section if you see **issues in the original comment**",
# children=[]),
Field(type="container", title="", children=[
Field(name="issues_in_comment", type="likert_radio",
title="Based ONLY on the **preceding comment**, do **you see some issues** in that comment?", mandatory=True,
# TODO fix
# following_mandatory_values=[1, 2, 3, 4]
),
Field(name="moderator_spotted", type="likert_radio",
title="Based BOTH on the preceding **and the reply** comment, did the **moderator spot the issues** in the original comment? (regardless if you spotted them yourself)",
mandatory=True),
Field(name="reply_addresses_issues", type="likert_radio",
title="How well does the reply address **all of the above issues**?", mandatory=True)
]),
Field(type="container", title="**Score the following properties of the moderator comment?**", children=[
Field(name="neutrality", type="likert_radio", title="Neutrality",
help='Remain neutral on the topic and on the comment substance and commenter’s viewpoint. The reply shouldn’t give away the opinion of the moderator on the topic or comment. '),
# FieldDict(name="attitude", type="likert_radio", title="Attitude", help=''),
Field(name="clarity", type="likert_radio", title="Clarity",
help="Plain language, simple, clear, avoid overwhelming the user e.g. too many questions"),
Field(name="curiosity", type="likert_radio", title="Curiosity",
help="Moderators should model a spirit of inquiry and a desire to learn from and understand commenter’s experience and views. Try to be interested in the bases upon which each commenter stakes his or her claims and the lines of reasoning that has led each commenter to those particular conclusions."),
# TODO
Field(name="bias", type="likert_radio", title="Bias",
help="Does the reply show some biases towards the commenter? Are there stereotypes or prejudices?"),
Field(name="encouraging", type="likert_radio", title="Encouraging",
help="Welcoming, encouraging and acknowledging. Avoid Evaluative and/or Condescending Responses"),
]),
Field(type="markdown", title="---"),
Field(name="score", type="likert_radio",
title="**Overall score:** Based on the above, how good is the reply as a moderator comment? ",
other_params={'labels': quality_labels,
# sanity checks
'accepted_values_per_sample': {
# first sample is good
0: [2, 3, 4],
# second sample is bad
1: [0, 1],
}
}),
Field(type="container", title="Which **moderator function** does the comment address and how well?", children=[
Field(name="moderator_function_quality", type="likert_radio", title="Improving quality",
help="""Providing substantive information about the proposed rule\n
Correcting misstatements or clarifying what the agency is looking for\n
Pointing to relevant information in primary documents or other data\n
Pointing out characteristics of effective commenting\n
Asking users to provide more information, factual details, or data to support their statements\n
Asking users to make or consider possible solutions/alternative approaches"""),
Field(name="moderator_function_broadening", type="likert_radio", title="Broadening discussion",
help="""Encouraging users to consider and engage comments of other users\n
Posing a question to the community at large that encourages other users to respond"""),
Field(name="moderator_function_other", type="text", title="Other moderator function(s)", mandatory=False),
]),
Field(name="other_comments", type="text", title="Further comments: free text", mandatory=False),
]
url_conditional_fields = [
Field(name="skip", type="skip_checkbox",
title="I am uncomfortable annotating this text and voluntarily skip this instance", mandatory=False)
]
INPUT_FIELD_DEFAULT_VALUES = {'slider': 0,
'select_slider': 0,
'radio': None,
'likert_radio': None,
'text': '',
'textarea': '',
'checkbox': False}
SHOW_HELP_ICON = False
SHOW_VALIDATION_ERROR_MESSAGE = True
########################################################################################
def get_start_index():
if hf_fs.exists(output_repo_path + '/' + get_base_path()):
files = hf_fs.ls(output_repo_path + '/' + get_base_path())
return len(files) - 4
return -4
def read_data():
assert st.session_state.phase, "Phase not provided"
with hf_fs.open(input_repo_path + '/' + to_annotate_file_name.format(phase=st.session_state.phase)) as f:
return pd.read_csv(f)
def read_saved_data():
_path = get_path()
if hf_fs.exists(output_repo_path + '/' + _path):
with hf_fs.open(output_repo_path + '/' + _path) as f:
try:
return json.load(f)
except json.JSONDecodeError as e:
print(e)
return None
# Write a remote file
def save_data(data):
hf_fs.mkdir(f"{output_repo_path}/{data['user_id']}")
with hf_fs.open(f"{output_repo_path}/{get_path()}", "w") as f:
f.write(json.dumps(data))
def get_base_path():
return f"{st.session_state.phase}/{st.session_state.batch}/{st.session_state.user_id}"
def get_path():
return f"{get_base_path()}/{st.session_state.current_index}.json"
#################################### Streamlit App ####################################
# Function to navigate rows
def navigate(index_change):
st.session_state.current_index += index_change
# only works consistently if done before rerun
js = '''
<script>
var body = window.parent.document.querySelector(".main");
body.scrollTop = 0;
window.scrollY = 0;
</script>
'''
st.components.v1.html(js, height=0)
# https://discuss.streamlit.io/t/click-twice-on-button-for-changing-state/45633/2
# disable text input enter to submit
# https://discuss.streamlit.io/t/text-input-how-to-disable-press-enter-to-apply/14457/6
components.html(
"""
<script>
const inputs = window.parent.document.querySelectorAll('input');
inputs.forEach(input => {
input.addEventListener('keydown', function(event) {
if (event.key === 'Enter') {
event.preventDefault();
}
});
});
</script>
""",
height=0
)
st.rerun()
def show_field(f: Field, index: int, data_collected):
if f.type not in INPUT_FIELD_DEFAULT_VALUES.keys():
st.session_state.following_mandatory = False
match f.type:
case 'input_col':
value = st.session_state.data.iloc[index][f.name]
if value and value is not np.nan:
st.write(f.title)
st.write(value)
case 'markdown':
st.markdown(f.title)
case 'expander' | 'container':
with (st.expander(f.title) if f.type == 'expander' else st.container(border=True)):
if f.type == 'container':
st.markdown(f.title)
for child in f.children:
show_field(child, index, data_collected)
case 'skip_checkbox':
st.checkbox(f.title, key=f.name, value=False)
else:
key = f.name + str(index)
st.session_state.data_inputs_keys.append(f.name)
value = st.session_state[key] if key in st.session_state else \
(data_collected[f.name] if data_collected else INPUT_FIELD_DEFAULT_VALUES[f.type])
if not SHOW_HELP_ICON:
f.title = f'**{f.title}**\n\n{f.help}' if f.help else f.title
validation_error = False
# form is not displayed for first time
if st.session_state.form_displayed == st.session_state.current_index:
if f.mandatory or st.session_state.following_mandatory:
if st.session_state[key] == INPUT_FIELD_DEFAULT_VALUES[f.type]:
st.session_state.valid = False
validation_error = True
elif f.following_mandatory_values and st.session_state[key] in f.following_mandatory_values:
st.session_state.following_mandatory = True
# check for any unaccepted values
if (
(f.other_params.get('accepted_values') and
value not in f.other_params.get('accepted_values')) or
(f.other_params.get('accepted_values_per_sample') and
index in f.other_params.get('accepted_values_per_sample') and
value not in f.other_params.get('accepted_values_per_sample').get(index))
):
st.session_state.unacceptable_response = True
if f.mandatory or st.session_state.following_mandatory:
f.title += " :red[* required!]" if (validation_error and not SHOW_VALIDATION_ERROR_MESSAGE) else' :red[*]'
f.help = None
match f.type:
case 'checkbox':
st.checkbox(f.title,
key=key,
value=value, help=f.help)
case 'slider':
st.slider(f.title,
min_value=0, max_value=100, step=25,
key=key,
value=value, help=f.help)
case 'select_slider':
labels = default_labels if not f.other_params.get('labels') else f.other_params.get('labels')
st.select_slider(f.title,
options=[0, 25, 50, 75, 100],
format_func=lambda x: labels[x // 25],
key=key,
value=value, help=f.help)
case 'radio':
labels = default_labels if not f.other_params.get('labels') else f.other_params.get('labels')
st.radio(f.title,
options=range(len(labels)),
format_func=lambda x: labels[x],
key=key,
index=value, help=f.help, horizontal=False)
case 'likert_radio':
labels = default_labels if not f.other_params.get('labels') else f.other_params.get('labels')
st.radio(f.title,
options=[0, 1, 2, 3, 4],
format_func=lambda x: labels[x],
key=key,
index=value, help=f.help, horizontal=True)
case 'text':
st.text_input(f.title, key=key, value=value)
case 'textarea':
st.text_area(f.title, key=key, value=value)
if validation_error:
st.session_state.unacceptable_response = False
st.error(f"Mandatory field")
def show_fields(fields: List[Field]):
st.session_state.valid = True
index = st.session_state.current_index
data_collected = read_saved_data()
st.session_state.data_inputs_keys = []
st.session_state.following_mandatory = False
for field in fields:
show_field(field, index, data_collected)
submitted = st.form_submit_button("Submit")
if submitted:
if 'unacceptable_response' in st.session_state and st.session_state.unacceptable_response:
prep_and_save_data(index, ('skip' in st.session_state and st.session_state['skip']))
st.rerun()
skip_sample = ('skip' in st.session_state and st.session_state['skip'])
if not skip_sample and not st.session_state.valid:
st.error("Please fill in all mandatory fields")
# st.rerun() # filed-out values are not shown otherwise
else:
with st.spinner(text="saving"):
prep_and_save_data(index, skip_sample)
st.success("Feedback submitted successfully!")
navigate(1)
st.session_state.form_displayed = st.session_state.current_index
def prep_and_save_data(index, skip_sample):
save_data({
'user_id': st.session_state.user_id,
'index': st.session_state.current_index,
**(st.session_state.data.iloc[index][COLS_TO_SAVE].to_dict() if index >= 0 else {}),
**{k: st.session_state[k + str(index)] for k in st.session_state.data_inputs_keys},
'skip': skip_sample
})
# st.set_page_config(layout='wide')
# Title of the app
st.title("Moderation Properties")
st.markdown(
"""<style>
div[data-testid="stMarkdownContainer"] > p {
font-size: 1rem;
}
section.main > div {max-width:60rem}
</style>
""", unsafe_allow_html=True)
def add_annotation_guidelines():
st.write(f"username is {st.session_state.user_id}")
st.markdown(
"<details open><summary><b>Annotation Guidelines</b></summary>" + guidelines_text + "</details><br>"
, unsafe_allow_html=True)
if 'unacceptable_response' in st.session_state and st.session_state.unacceptable_response:
add_annotation_guidelines()
st.error("You are not eligible for this study. Thank you for your time!" +
("" if st.session_state.current_index < 0 else
" You will receive a small compensation as explained in the guidelines. "
"Please return the study and copy/paste this code: " + failed_sanity_check_code))
st.stop()
st.session_state.phase = get_param_from_url("phase")
# Load the data to annotate
if 'data' not in st.session_state:
st.session_state.batch = get_param_from_url("batch")
data = read_data()
if st.session_state:
st.session_state.data = data[data['batch'] == int(st.session_state.batch)]
else:
raise ValueError("Batch not provided")
# user id
user_id_from_url = get_param_from_url("user_id")
if user_id_from_url:
st.session_state.user_id = user_id_from_url
# current index
if 'current_index' not in st.session_state:
start_index = get_start_index()
st.session_state.current_index = start_index
st.session_state.form_displayed = -4
if get_param_from_url('show_extra_fields'):
fields += url_conditional_fields
def add_validated_submit(fields, message):
st.session_state.form_displayed = st.session_state.current_index
if st.form_submit_button("Submit"):
if all(not x for x in fields):
st.error(message)
else:
navigate(1)
def add_checked_submit():
check = st.checkbox('I agree', key='consent')
add_validated_submit([check], "Please agree to give your consent to proceed")
if st.session_state.current_index == -4:
with st.form("data_form"):
st.markdown(consent_text)
add_checked_submit()
elif st.session_state.current_index == -3:
if st.session_state.get('user_id'):
navigate(1)
else:
with st.form("data_form"):
st.session_state.user_id = st.text_input('User ID', value=user_id_from_url)
add_validated_submit([st.session_state.user_id], "Please enter a valid user ID")
elif st.session_state.current_index == -2:
add_annotation_guidelines()
with st.form("intro_form"):
show_fields(annotation_guidelines_fields)
elif st.session_state.current_index == -1:
add_annotation_guidelines()
with st.form("intro_form"):
show_fields(intro_fields)
elif st.session_state.current_index < len(st.session_state.data):
add_annotation_guidelines()
with st.form("data_form"+str(st.session_state.current_index)):
show_fields(fields)
else:
st.write(f"Thank you for taking part in this study! [Click here]({redirect_url}) to complete the study.")
# Navigation buttons
if st.session_state.current_index > 0:
if st.button("Previous"):
navigate(-1)
if 0 <= st.session_state.current_index < len(st.session_state.data):
st.write(f"Page {st.session_state.current_index + 1} out of {len(st.session_state.data)}")
st.markdown(
"""<style>
div[data-testid="InputInstructions"] {
visibility: hidden;
}
</style>""", unsafe_allow_html=True
)