matcher / app.py
kells1986
Improve text box titles
3ff1651
import gradio as gr
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
class Matcher:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
self.model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def _encoder(self, text: list[str]):
encoded_input = self.tokenizer(text, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = self.model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings
def __call__(self, textA: list[str], textB: list[str]):
embeddings_a = self._encoder(textA)
embeddings_b = self._encoder(textB)
sim = embeddings_a @ embeddings_b.T
match_inds = torch.argmax(sim, dim=1)
match_conf = torch.max(sim, dim=1).values
return match_inds.tolist(), match_conf.tolist()
def run_match(source_text, destination_text):
matcher = Matcher()
sources = source_text.split("\n")
destinations = destination_text.split("\n")
match_inds, match_conf = matcher(sources, destinations)
matches = [f"{sources[i]} -> {destinations[match_inds[i]]} ({match_conf[i]:.2f})" for i in
range(len(sources))]
return "\n".join(matches)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
source_text = gr.Textbox(lines=10, label="Query Text", name="source_text",
default="diavola with extra chillies\nseafood\nmargherita")
with gr.Column():
dest_text = gr.Textbox(lines=10, label="Target Text", name="destination_text",
default="cheese pizza\nhot and spicy pizza\ntuna, prawn and onion pizza")
with gr.Column():
matches = gr.Textbox(lines=10, label="Matches", name="matches")
with gr.Row():
match_btn = gr.Button(label="Match", name="run")
match_btn.click(fn=run_match, inputs=[source_text, dest_text], outputs=matches)
demo.launch()