Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright 2024 The HuggingFace Inc. team. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| """Convert SigLIP checkpoints from the original repository. | |
| URL: https://github.com/google-research/big_vision/tree/main | |
| """ | |
| import argparse | |
| import collections | |
| from pathlib import Path | |
| import numpy as np | |
| import requests | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from numpy import load | |
| from PIL import Image | |
| from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer | |
| from transformers.utils import logging | |
| logging.set_verbosity_info() | |
| logger = logging.get_logger(__name__) | |
| model_name_to_checkpoint = { | |
| # base checkpoints | |
| "siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz", | |
| "siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz", | |
| "siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz", | |
| "siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz", | |
| # large checkpoints | |
| "siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz", | |
| "siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz", | |
| # multilingual checkpoint | |
| "siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz", | |
| # so400m checkpoints | |
| "siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz", | |
| } | |
| model_name_to_image_size = { | |
| "siglip-base-patch16-224": 224, | |
| "siglip-base-patch16-256": 256, | |
| "siglip-base-patch16-384": 384, | |
| "siglip-base-patch16-512": 512, | |
| "siglip-large-patch16-256": 256, | |
| "siglip-large-patch16-384": 384, | |
| "siglip-base-patch16-256-i18n": 256, | |
| "siglip-so400m-patch14-384": 384, | |
| } | |
| def get_siglip_config(model_name): | |
| config = SiglipConfig() | |
| vocab_size = 250000 if "i18n" in model_name else 32000 | |
| image_size = model_name_to_image_size[model_name] | |
| patch_size = 16 if "patch16" in model_name else 14 | |
| # size of the architecture | |
| config.vision_config.image_size = image_size | |
| config.vision_config.patch_size = patch_size | |
| config.text_config.vocab_size = vocab_size | |
| if "base" in model_name: | |
| pass | |
| elif "large" in model_name: | |
| config.text_config.hidden_size = 1024 | |
| config.text_config.intermediate_size = 4096 | |
| config.text_config.num_hidden_layers = 24 | |
| config.text_config.num_attention_heads = 16 | |
| config.vision_config.hidden_size = 1024 | |
| config.vision_config.intermediate_size = 4096 | |
| config.vision_config.num_hidden_layers = 24 | |
| config.vision_config.num_attention_heads = 16 | |
| elif "so400m" in model_name: | |
| config.text_config.hidden_size = 1152 | |
| config.text_config.intermediate_size = 4304 | |
| config.text_config.num_hidden_layers = 27 | |
| config.text_config.num_attention_heads = 16 | |
| config.vision_config.hidden_size = 1152 | |
| config.vision_config.intermediate_size = 4304 | |
| config.vision_config.num_hidden_layers = 27 | |
| config.vision_config.num_attention_heads = 16 | |
| else: | |
| raise ValueError("Model not supported") | |
| return config | |
| def create_rename_keys(config): | |
| rename_keys = [] | |
| # fmt: off | |
| # vision encoder | |
| rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight")) | |
| rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias")) | |
| rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight")) | |
| for i in range(config.vision_config.num_hidden_layers): | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight")) | |
| rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias")) | |
| rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight")) | |
| rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias")) | |
| rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe")) | |
| rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight")) | |
| rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias")) | |
| rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight")) | |
| rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias")) | |
| rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight")) | |
| rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias")) | |
| rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight")) | |
| rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias")) | |
| # text encoder | |
| rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight")) | |
| rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight")) | |
| for i in range(config.text_config.num_hidden_layers): | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight")) | |
| rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias")) | |
| rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight")) | |
| rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias")) | |
| rename_keys.append(("params/txt/head/kernel", "text_model.head.weight")) | |
| rename_keys.append(("params/txt/head/bias", "text_model.head.bias")) | |
| # learned temperature and bias | |
| rename_keys.append(("params/t", "logit_scale")) | |
| rename_keys.append(("params/b", "logit_bias")) | |
| # fmt: on | |
| return rename_keys | |
| def rename_key(dct, old, new, config): | |
| val = dct.pop(old) | |
| if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new: | |
| val = val.reshape(-1, config.vision_config.hidden_size) | |
| if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new: | |
| val = val.reshape(-1, config.text_config.hidden_size) | |
| if "patch_embedding.weight" in new: | |
| val = val.transpose(3, 2, 0, 1) | |
| elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new: | |
| val = val.T | |
| if "position_embedding" in new and "vision" in new: | |
| val = val.reshape(-1, config.vision_config.hidden_size) | |
| if "position_embedding" in new and "text" in new: | |
| val = val.reshape(-1, config.text_config.hidden_size) | |
| if new.endswith("bias"): | |
| val = val.reshape(-1) | |
| dct[new] = torch.from_numpy(val) | |
| def read_in_q_k_v_head(state_dict, config): | |
| # read in individual input projection layers | |
| key_proj_weight = ( | |
| state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel") | |
| .reshape(-1, config.vision_config.hidden_size) | |
| .T | |
| ) | |
| key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1) | |
| value_proj_weight = ( | |
| state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel") | |
| .reshape(-1, config.vision_config.hidden_size) | |
| .T | |
| ) | |
| value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1) | |
| query_proj_weight = ( | |
| state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel") | |
| .reshape(-1, config.vision_config.hidden_size) | |
| .T | |
| ) | |
| query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1) | |
| # next, add them to the state dict as a single matrix + vector | |
| state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy( | |
| np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0) | |
| ) | |
| state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy( | |
| np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0) | |
| ) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| image = Image.open(requests.get(url, stream=True).raw) | |
| return image | |
| def flatten_nested_dict(params, parent_key="", sep="/"): | |
| items = [] | |
| for k, v in params.items(): | |
| new_key = parent_key + sep + k if parent_key else k | |
| if isinstance(v, collections.abc.MutableMapping): | |
| items.extend(flatten_nested_dict(v, new_key, sep=sep).items()) | |
| else: | |
| items.append((new_key, v)) | |
| return dict(items) | |
| def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False): | |
| """ | |
| Copy/paste/tweak model's weights to our SigLIP structure. | |
| """ | |
| # define default SigLIP configuration | |
| config = get_siglip_config(model_name) | |
| # get checkpoint | |
| checkpoint = model_name_to_checkpoint[model_name] | |
| # get vocab file | |
| if "i18n" in model_name: | |
| vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model" | |
| else: | |
| vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model" | |
| # load original state dict | |
| data = load(checkpoint) | |
| state_dict = flatten_nested_dict(data) | |
| # remove and rename some keys | |
| rename_keys = create_rename_keys(config) | |
| for src, dest in rename_keys: | |
| rename_key(state_dict, src, dest, config) | |
| # qkv matrices of attention pooling head need special treatment | |
| read_in_q_k_v_head(state_dict, config) | |
| # load HuggingFace model | |
| model = SiglipModel(config).eval() | |
| model.load_state_dict(state_dict) | |
| # create processor | |
| # important: make tokenizer not return attention_mask since original one doesn't require it | |
| image_size = config.vision_config.image_size | |
| size = {"height": image_size, "width": image_size} | |
| image_processor = SiglipImageProcessor(size=size) | |
| tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"]) | |
| processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer) | |
| # verify on dummy images and texts | |
| url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg" | |
| image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB") | |
| url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg" | |
| image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB") | |
| texts = ["an apple", "a picture of an apple"] | |
| inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length") | |
| # verify input_ids against original ones | |
| if image_size == 224: | |
| filename = "siglip_pixel_values.pt" | |
| elif image_size == 256: | |
| filename = "siglip_pixel_values_256.pt" | |
| elif image_size == 384: | |
| filename = "siglip_pixel_values_384.pt" | |
| elif image_size == 512: | |
| filename = "siglip_pixel_values_512.pt" | |
| else: | |
| raise ValueError("Image size not supported") | |
| filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset") | |
| original_pixel_values = torch.load(filepath) | |
| filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset") | |
| original_input_ids = torch.load(filepath) | |
| if "i18n" not in model_name: | |
| assert inputs.input_ids.tolist() == original_input_ids.tolist() | |
| print("Mean of original pixel values:", original_pixel_values.mean()) | |
| print("Mean of new pixel values:", inputs.pixel_values.mean()) | |
| # note: we're testing with original pixel values here since we don't have exact pixel values | |
| with torch.no_grad(): | |
| outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values) | |
| # with torch.no_grad(): | |
| # outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values) | |
| print(outputs.logits_per_image[:3, :3]) | |
| probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities | |
| print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") | |
| print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'") | |
| if verify_logits: | |
| if model_name == "siglip-base-patch16-224": | |
| expected_slice = torch.tensor( | |
| [[-2.9621, -2.1672], [-0.2713, 0.2910]], | |
| ) | |
| elif model_name == "siglip-base-patch16-256": | |
| expected_slice = torch.tensor( | |
| [[-3.1146, -1.9894], [-0.7312, 0.6387]], | |
| ) | |
| elif model_name == "siglip-base-patch16-384": | |
| expected_slice = torch.tensor( | |
| [[-2.8098, -2.1891], [-0.4242, 0.4102]], | |
| ) | |
| elif model_name == "siglip-base-patch16-512": | |
| expected_slice = torch.tensor( | |
| [[-2.7899, -2.2668], [-0.4295, -0.0735]], | |
| ) | |
| elif model_name == "siglip-large-patch16-256": | |
| expected_slice = torch.tensor( | |
| [[-1.5827, -0.5801], [-0.9153, 0.1363]], | |
| ) | |
| elif model_name == "siglip-large-patch16-384": | |
| expected_slice = torch.tensor( | |
| [[-2.1523, -0.2899], [-0.2959, 0.7884]], | |
| ) | |
| elif model_name == "siglip-so400m-patch14-384": | |
| expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]]) | |
| elif model_name == "siglip-base-patch16-256-i18n": | |
| expected_slice = torch.tensor( | |
| [[-0.9064, 0.1073], [-0.0299, 0.5304]], | |
| ) | |
| assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4) | |
| print("Looks ok!") | |
| if pytorch_dump_folder_path is not None: | |
| Path(pytorch_dump_folder_path).mkdir(exist_ok=True) | |
| print(f"Saving model {model_name} to {pytorch_dump_folder_path}") | |
| model.save_pretrained(pytorch_dump_folder_path) | |
| print(f"Saving processor to {pytorch_dump_folder_path}") | |
| processor.save_pretrained(pytorch_dump_folder_path) | |
| if push_to_hub: | |
| model.push_to_hub(f"nielsr/{model_name}") | |
| processor.push_to_hub(f"nielsr/{model_name}") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| # Required parameters | |
| parser.add_argument( | |
| "--model_name", | |
| default="siglip-base-patch16-224", | |
| type=str, | |
| choices=model_name_to_checkpoint.keys(), | |
| help="Name of the model you'd like to convert.", | |
| ) | |
| parser.add_argument( | |
| "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." | |
| ) | |
| parser.add_argument( | |
| "--verify_logits", | |
| action="store_false", | |
| help="Whether to verify logits against the original implementation.", | |
| ) | |
| parser.add_argument( | |
| "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." | |
| ) | |
| args = parser.parse_args() | |
| convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub) | |
 
			
