ihsanvp commited on
Commit
c36adbc
1 Parent(s): 5a50f18

update: remove refiner

Browse files
Files changed (1) hide show
  1. app.py +22 -22
app.py CHANGED
@@ -22,22 +22,22 @@ if gr.NO_RELOAD:
22
  variant="fp16",
23
  use_safetensors=True,
24
  )
25
- refiner = DiffusionPipeline.from_pretrained(
26
- "stabilityai/stable-diffusion-xl-refiner-1.0",
27
- text_encoder_2=base.text_encoder_2,
28
- vae=base.vae,
29
- torch_dtype=torch.float16,
30
- use_safetensors=True,
31
- variant="fp16",
32
- )
33
  pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
34
 
35
  base.to("cuda")
36
- refiner.to("cuda")
37
  pipeline.to("cuda")
38
 
39
  base.unet = torch.compile(base.unet, mode="reduce-overhead", fullgraph=True)
40
- refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
41
  pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
42
 
43
  def generate(prompt: str, progress=gr.Progress()):
@@ -55,18 +55,18 @@ def generate(prompt: str, progress=gr.Progress()):
55
  ),
56
  ).images[0]
57
  progress((n_sdxl_steps * high_noise_frac, total_steps), desc="Refining first frame...")
58
- image = refiner(
59
- prompt=prompt,
60
- num_inference_steps=n_sdxl_steps,
61
- denoising_start=high_noise_frac,
62
- image=image,
63
- callback_on_step_end=create_progress_updater(
64
- start=n_sdxl_steps * high_noise_frac,
65
- total=total_steps,
66
- desc="Refining first frame...",
67
- progress=progress,
68
- ),
69
- ).images[0]
70
  image = to_tensor(image)
71
  progress((n_sdxl_steps, total_steps), desc="Generating video...")
72
  frames: list[Image.Image] = pipeline(
 
22
  variant="fp16",
23
  use_safetensors=True,
24
  )
25
+ # refiner = DiffusionPipeline.from_pretrained(
26
+ # "stabilityai/stable-diffusion-xl-refiner-1.0",
27
+ # text_encoder_2=base.text_encoder_2,
28
+ # vae=base.vae,
29
+ # torch_dtype=torch.float16,
30
+ # use_safetensors=True,
31
+ # variant="fp16",
32
+ # )
33
  pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
34
 
35
  base.to("cuda")
36
+ # refiner.to("cuda")
37
  pipeline.to("cuda")
38
 
39
  base.unet = torch.compile(base.unet, mode="reduce-overhead", fullgraph=True)
40
+ # refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
41
  pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
42
 
43
  def generate(prompt: str, progress=gr.Progress()):
 
55
  ),
56
  ).images[0]
57
  progress((n_sdxl_steps * high_noise_frac, total_steps), desc="Refining first frame...")
58
+ # image = refiner(
59
+ # prompt=prompt,
60
+ # num_inference_steps=n_sdxl_steps,
61
+ # denoising_start=high_noise_frac,
62
+ # image=image,
63
+ # callback_on_step_end=create_progress_updater(
64
+ # start=n_sdxl_steps * high_noise_frac,
65
+ # total=total_steps,
66
+ # desc="Refining first frame...",
67
+ # progress=progress,
68
+ # ),
69
+ # ).images[0]
70
  image = to_tensor(image)
71
  progress((n_sdxl_steps, total_steps), desc="Generating video...")
72
  frames: list[Image.Image] = pipeline(