Spaces:
Sleeping
Sleeping
Use lt fine-tuned model for TTS
Browse files
app.py
CHANGED
@@ -11,10 +11,13 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
|
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
|
|
|
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -22,7 +25,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
+
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
+
processor = SpeechT5Processor.from_pretrained("ihanif/speecht5_finetuned_voxpopuli_lt")
|
17 |
|
18 |
+
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
19 |
+
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
20 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("ihanif/speecht5_finetuned_voxpopuli_lt").to(device)
|
21 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
22 |
|
23 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
25 |
|
26 |
|
27 |
def translate(audio):
|
28 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "lt"})
|
29 |
return outputs["text"]
|
30 |
|
31 |
|