idefics2 / app_NWrk.py
arjunanand13's picture
Rename app.py to app_NWrk.py
79f2932 verified
raw
history blame
5.85 kB
import gradio as gr
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
from peft import LoraConfig
from transformers import BitsAndBytesConfig
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
DEVICE = "cuda:0"
USE_LORA = False
USE_QLORA = True
processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b", do_image_splitting=False)
if USE_QLORA or USE_LORA:
lora_config = LoraConfig(
r=8,
lora_alpha=8,
lora_dropout=0.1,
target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*',
use_dora=False if USE_QLORA else True,
init_lora_weights="gaussian"
)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
) if USE_QLORA else None
model = Idefics2ForConditionalGeneration.from_pretrained(
"HuggingFaceM4/idefics2-8b",
torch_dtype=torch.float16,
quantization_config=bnb_config,
)
model.add_adapter(lora_config)
model.enable_adapters()
else:
model = Idefics2ForConditionalGeneration.from_pretrained(
"HuggingFaceM4/idefics2-8b",
torch_dtype=torch.float16,
_attn_implementation="flash_attention_2"
).to("cuda")
import gradio as gr
from huggingface_hub import InferenceApi
import base64
from PIL import Image
import io
client = InferenceApi("HuggingFaceM4/idefics2-8b")
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
def model_inference(image, text):
image_base64 = image_to_base64(image)
inputs = {
"inputs": {
"text": text,
"image": image_base64
}
}
result = client(inputs)
print(result)
generated_text = result['generated_text']
return generated_text
with gr.Blocks(css="""
.input_image, .prompt_input {
background-color: lightgrey;
}
""") as demo:
gr.Markdown("## IDEFICS2 Demo")
# Create a row with two columns of equal size
with gr.Row():
with gr.Column():
# Labelled input fields
image_input = gr.Image(label="Upload Image", type="pil", elem_classes=["input_image"]) #,height=240, width=320
query_input = gr.Textbox(label="Enter Prompt", placeholder="Type your prompt here...", elem_classes=["prompt_input"])
with gr.Column():
# Output textbox
output = gr.Textbox(label="Model Output", interactive=True, placeholder="Output will be displayed here...", elem_classes=["prompt_input"])
# Button to submit the inputs for model inference
submit_btn = gr.Button("Generate")
submit_btn.click(model_inference, inputs=[image_input, query_input], outputs=output)
# Example inputs for quick testing
examples = [
["american_football.png", "Explain in detail what is depicted in the picture"],
["bike.png", "Describe in detail what you see in this image."],
["finance.png", "Describe in detail everything you see in the image."],
["science.png", "Extract all visible text in the image, keeping the format."],
["spirituality.png", "Extract all text from the image, preserving its format."]
]
gr.Examples(examples=examples, inputs=[image_input, query_input], outputs=output)
# Launch the Gradio app with debugging enabled
demo.launch(debug=True)
# with gr.Blocks(css=".input_image {max-width: 100%; border: 1px solid #ccc; box-shadow: 0 0 10px #ccc; margin-bottom: 10px;} .output_textbox {min-height: 100px;}") as demo:
# gr.Markdown("## Enhanced IDEFICS2 Demo")
# with gr.Row():
# with gr.Column(scale=1):
# image_input = gr.Image(label="Upload Image", type="pil", height=240, width=320)
# query_input = gr.Textbox(label="Enter Prompt", placeholder="Type your prompt here...")
# with gr.Column(scale=1):
# output = gr.Textbox(label="Model Output", interactive=True, placeholder="Output will be displayed here...")
# submit_btn = gr.Button("Generate")
# submit_btn.click(model_inference, inputs=[image_input, query_input], outputs=output)
# examples = [
# ["american_football.png", "Explain in detail what is depicted in the picture"],
# ["bike.png", "Explore the image closely and describe in detail what you discover."],
# ["finance.png", "Provide a detailed description of everything you see in the image."],
# ["science.png", "Please perform optical character recognition (OCR) on the uploaded image. Extract all text visible in the image accurately. Ensure to capture the text in its entirety and maintain the formatting as closely as possible to how it appears in the image. After extracting the text, display it in a clear and readable format, making sure that any special characters or symbols are also accurately represented. Provide the extracted text as output."],
# ["spirituality.png", "Please perform optical character recognition (OCR) on the uploaded image. Extract all text visible in the image accurately. Ensure to capture the text in its entirety and maintain the formatting as closely as possible to how it appears in the image. After extracting the text, display it in a clear and readable format, making sure that any special characters or symbols are also accurately represented. Provide the extracted text as output."]
# ]
# gr.Examples(examples=examples, inputs=[image_input, query_input], outputs=output)
# demo.launch(debug=True)