Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -93,14 +93,27 @@ class DocumentRetrievalAndGeneration:
|
|
93 |
content += "-" * 50 + "\n"
|
94 |
content += self.all_splits[idx].page_content + "\n"
|
95 |
|
96 |
-
prompt = f"""
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
Here's my question:
|
99 |
-
Query:
|
100 |
-
Solution
|
101 |
-
RETURN ONLY SOLUTION. IF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
</s>
|
103 |
"""
|
|
|
104 |
messages = [{"role": "user", "content": prompt}]
|
105 |
encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
|
106 |
model_inputs = encodeds.to(self.llm.model.device)
|
|
|
93 |
content += "-" * 50 + "\n"
|
94 |
content += self.all_splits[idx].page_content + "\n"
|
95 |
|
96 |
+
prompt = f"""<s>
|
97 |
+
You are a knowledgeable assistant with access to a comprehensive database.
|
98 |
+
I need you to answer my question and provide related information in a specific format.
|
99 |
+
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query
|
100 |
+
Here's what I need:
|
101 |
+
Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
102 |
+
content
|
103 |
Here's my question:
|
104 |
+
Query:{query}
|
105 |
+
Solution==>
|
106 |
+
RETURN ONLY SOLUTION . IF THEIR IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS , RETURN " NO SOLUTION AVAILABLE"
|
107 |
+
Example1
|
108 |
+
Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
109 |
+
Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
|
110 |
+
|
111 |
+
Example2
|
112 |
+
Query: "Can BQ25896 support I2C interface?",
|
113 |
+
Solution: "Yes, the BQ25896 charger supports the I2C interface for communication."
|
114 |
</s>
|
115 |
"""
|
116 |
+
|
117 |
messages = [{"role": "user", "content": prompt}]
|
118 |
encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
|
119 |
model_inputs = encodeds.to(self.llm.model.device)
|