Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -30,49 +30,51 @@ HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
30 |
model_id = 'meta-llama/Meta-Llama-3-8B'
|
31 |
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
32 |
|
33 |
-
# set quantization configuration to load large model with less GPU memory
|
34 |
-
# this requires the `bitsandbytes` library
|
35 |
-
# bnb_config = transformers.BitsAndBytesConfig(
|
36 |
-
# load_in_4bit=True,
|
37 |
-
# bnb_4bit_quant_type='nf4',
|
38 |
-
# bnb_4bit_use_double_quant=True,
|
39 |
-
# bnb_4bit_compute_dtype=bfloat16
|
40 |
-
# )
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
"""
|
78 |
Setting up the stop list to define stopping criteria.
|
|
|
30 |
model_id = 'meta-llama/Meta-Llama-3-8B'
|
31 |
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
"""set quantization configuration to load large model with less GPU memory
|
35 |
+
this requires the `bitsandbytes` library"""
|
36 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
37 |
+
load_in_4bit=True,
|
38 |
+
bnb_4bit_quant_type='nf4',
|
39 |
+
bnb_4bit_use_double_quant=True,
|
40 |
+
bnb_4bit_compute_dtype=bfloat16
|
41 |
+
)
|
42 |
+
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct",token=HF_TOKEN)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto",token=HF_TOKEN) # to("cuda:0")
|
45 |
+
terminators = [
|
46 |
+
tokenizer.eos_token_id,
|
47 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
48 |
+
]
|
49 |
+
|
50 |
+
"""CPU"""
|
51 |
+
|
52 |
+
# model_config = transformers.AutoConfig.from_pretrained(
|
53 |
+
# model_id,
|
54 |
+
# token=HF_TOKEN,
|
55 |
+
# # use_auth_token=hf_auth
|
56 |
+
# )
|
57 |
+
# model = transformers.AutoModelForCausalLM.from_pretrained(
|
58 |
+
# model_id,
|
59 |
+
# trust_remote_code=True,
|
60 |
+
# config=model_config,
|
61 |
+
# # quantization_config=bnb_config,
|
62 |
+
# token=HF_TOKEN,
|
63 |
+
# # use_auth_token=hf_auth
|
64 |
+
# )
|
65 |
+
# model.eval()
|
66 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained(
|
67 |
+
# model_id,
|
68 |
+
# token=HF_TOKEN,
|
69 |
+
# # use_auth_token=hf_auth
|
70 |
+
# )
|
71 |
+
# generate_text = transformers.pipeline(
|
72 |
+
# model=self.model, tokenizer=self.tokenizer,
|
73 |
+
# return_full_text=True,
|
74 |
+
# task='text-generation',
|
75 |
+
# temperature=0.01,
|
76 |
+
# max_new_tokens=512
|
77 |
+
# )
|
78 |
|
79 |
"""
|
80 |
Setting up the stop list to define stopping criteria.
|