Spaces:
Runtime error
Runtime error
import gradio as gr | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import accelerate | |
import einops | |
import langchain | |
import xformers | |
import os | |
import bitsandbytes | |
import sentence_transformers | |
import huggingface_hub | |
import torch | |
from torch import cuda, bfloat16 | |
from transformers import StoppingCriteria, StoppingCriteriaList | |
from langchain.llms import HuggingFacePipeline | |
from langchain.document_loaders import TextLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
from huggingface_hub import InferenceClient | |
# Login to Hugging Face using a token | |
# huggingface_hub.login(HF_TOKEN) | |
""" | |
Loading of the LLama3 model | |
""" | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
model_id = 'meta-llama/Meta-Llama-3-8B' | |
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' | |
"""set quantization configuration to load large model with less GPU memory | |
this requires the `bitsandbytes` library""" | |
bnb_config = transformers.BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type='nf4', | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct",token=HF_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto",token=HF_TOKEN,quantization_config=bnb_config) # to("cuda:0") | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
"""CPU""" | |
# model_config = transformers.AutoConfig.from_pretrained( | |
# model_id, | |
# token=HF_TOKEN, | |
# # use_auth_token=hf_auth | |
# ) | |
# model = transformers.AutoModelForCausalLM.from_pretrained( | |
# model_id, | |
# trust_remote_code=True, | |
# config=model_config, | |
# # quantization_config=bnb_config, | |
# token=HF_TOKEN, | |
# # use_auth_token=hf_auth | |
# ) | |
# model.eval() | |
# tokenizer = transformers.AutoTokenizer.from_pretrained( | |
# model_id, | |
# token=HF_TOKEN, | |
# # use_auth_token=hf_auth | |
# ) | |
# generate_text = transformers.pipeline( | |
# model=self.model, tokenizer=self.tokenizer, | |
# return_full_text=True, | |
# task='text-generation', | |
# temperature=0.01, | |
# max_new_tokens=512 | |
# ) | |
""" | |
Setting up the stop list to define stopping criteria. | |
""" | |
stop_list = ['\nHuman:', '\n```\n'] | |
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list] | |
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids] | |
# define custom stopping criteria object | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
for stop_ids in stop_token_ids: | |
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all(): | |
return True | |
return False | |
stopping_criteria = StoppingCriteriaList([StopOnTokens()]) | |
generate_text = transformers.pipeline( | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, # langchain expects the full text | |
task='text-generation', | |
# we pass model parameters here too | |
stopping_criteria=stopping_criteria, # without this model rambles during chat | |
temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max | |
max_new_tokens=512, # max number of tokens to generate in the output | |
repetition_penalty=1.1 # without this output begins repeating | |
) | |
llm = HuggingFacePipeline(pipeline=generate_text) | |
loader = DirectoryLoader('data/text/', loader_cls=TextLoader) | |
documents = loader.load() | |
print('len of documents are',len(documents)) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250) | |
all_splits = text_splitter.split_documents(documents) | |
model_name = "sentence-transformers/all-mpnet-base-v2" | |
model_kwargs = {"device": "cuda"} | |
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) | |
# storing embeddings in the vector store | |
vectorstore = FAISS.from_documents(all_splits, embeddings) | |
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True) | |
chat_history = [] | |
def format_prompt(query): | |
# Construct a clear and structured prompt to guide the LLM's response | |
prompt = f""" | |
You are a knowledgeable assistant with access to a comprehensive database. | |
I need you to answer my question and provide related information in a specific format. | |
Here's what I need: | |
1. A brief, general response to my question based on related answers retrieved. | |
2. A JSON-formatted output containing: | |
- "question": The original question. | |
- "answer": The detailed answer. | |
- "related_questions": A list of related questions and their answers, each as a dictionary with the keys: | |
- "question": The related question. | |
- "answer": The related answer. | |
Here's my question: | |
{query} | |
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point. | |
""" | |
return prompt | |
def qa_infer(query): | |
formatted_prompt = format_prompt(query) | |
result = chain({"question": formatted_prompt, "chat_history": chat_history}) | |
return result['answer'] | |
# query = "What` is the best TS pin configuration for BQ24040 in normal battery charge mode" | |
# qa_infer(query) | |
EXAMPLES = ["What is the best TS pin configuration for BQ24040 in normal battery charge mode", | |
"Can BQ25896 support I2C interface?", | |
"Can you please provide me with Gerber/CAD file for UCC2897A"] | |
demo = gr.Interface(fn=qa_infer, inputs="text",allow_flagging='never', examples=EXAMPLES, | |
cache_examples=False,outputs="text") | |
# launch the app! | |
#demo.launch(enable_queue = True,share=True) | |
#demo.queue(default_enabled=True).launch(debug=True,share=True) | |
demo.launch() |