Spaces:
Runtime error
Runtime error
import torch | |
from torch import cuda, bfloat16 | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList | |
from langchain.llms import HuggingFacePipeline | |
from langchain.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
import gradio as gr | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import os | |
class Chatbot: | |
def __init__(self): | |
self.HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
self.model_id = "mistralai/Mistral-7B-Instruct-v0.2" | |
self.device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' | |
self.bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type='nf4', | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=bfloat16 | |
) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=self.HF_TOKEN) | |
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map="auto", token=self.HF_TOKEN, quantization_config=self.bnb_config) | |
self.stop_list = ['\nHuman:', '\n```\n'] | |
self.stop_token_ids = [self.tokenizer(x)['input_ids'] for x in self.stop_list] | |
self.stop_token_ids = [torch.LongTensor(x).to(self.device) for x in self.stop_token_ids] | |
self.stopping_criteria = StoppingCriteriaList([self.StopOnTokens()]) | |
self.generate_text = pipeline( | |
model=self.model, | |
tokenizer=self.tokenizer, | |
return_full_text=True, | |
task='text-generation', | |
temperature=0.1, | |
max_new_tokens=2048, | |
) | |
self.llm = HuggingFacePipeline(pipeline=self.generate_text) | |
try: | |
self.vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})) | |
print("Loaded embedding successfully") | |
except ImportError as e: | |
print("FAISS could not be imported. Make sure FAISS is installed correctly.") | |
raise e | |
self.chain = ConversationalRetrievalChain.from_llm(self.llm, self.vectorstore.as_retriever(), return_source_documents=True) | |
self.chat_history = [] | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
for stop_ids in self.stop_token_ids: | |
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all(): | |
return True | |
return False | |
def format_prompt(self, query): | |
prompt=f""" | |
You are a knowledgeable assistant with access to a comprehensive database. | |
I need you to answer my question and provide related information in a specific format. | |
I have provided four relatable json files , choose the most suitable chunks for answering the query | |
Here's what I need: | |
Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point. | |
Here's my question: | |
{query} | |
Solution==> | |
Example1 | |
Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", | |
Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.", | |
Example2 | |
Query: "Can BQ25896 support I2C interface?", | |
Solution: "Yes, the BQ25896 charger supports the I2C interface for communication.", | |
""" | |
return prompt | |
def qa_infer(self, query): | |
content = "" | |
formatted_prompt = self.format_prompt(query) | |
result = self.chain({"question": formatted_prompt, "chat_history": self.chat_history}) | |
for doc in result['source_documents']: | |
content += "-" * 50 + "\n" | |
content += doc.page_content + "\n" | |
print(content) | |
print("#" * 100) | |
print(result['answer']) | |
output_file = "output.txt" | |
with open(output_file, "w") as f: | |
f.write("Query:\n") | |
f.write(query + "\n\n") | |
f.write("Answer:\n") | |
f.write(result['answer'] + "\n\n") | |
f.write("Source Documents:\n") | |
f.write(content + "\n") | |
download_link = f'<a href="file/{output_file}" download>Download Output File</a>' | |
return result['answer'], content, download_link | |
def launch_interface(self): | |
css_code = """ | |
.gradio-container { | |
background-color: #daccdb; | |
} | |
/* Button styling for all buttons */ | |
button { | |
background-color: #927fc7; /* Default color for all other buttons */ | |
color: black; | |
border: 1px solid black; | |
padding: 10px; | |
margin-right: 10px; | |
font-size: 16px; /* Increase font size */ | |
font-weight: bold; /* Make text bold */ | |
} | |
""" | |
EXAMPLES = ["TDA4 product planning and datasheet release progress? ", | |
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", | |
"Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."] | |
dropdown = gr.Dropdown(label="Sample queries", choices=EXAMPLES) | |
dummy_outputs = [gr.Textbox(label="Dummy Output")] | |
tab1 = gr.Interface(fn=self.qa_infer, inputs=[gr.Textbox(label="QUERY", placeholder ="Enter your query here")], allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES"), gr.HTML()], css=css_code) | |
tab2 = gr.Interface(fn=self.qa_infer, inputs=[dropdown], allow_flagging='never', outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES"), gr.HTML()], css=css_code, title="Dropdown Input") | |
# Add dummy outputs to each interface | |
tab1.outputs = dummy_outputs | |
tab2.outputs = dummy_outputs | |
tabbed_interface = gr.Interface([tab1, tab2],["Textbox Input", "Dropdown Input"],title="TI E2E FORUM",theme="compact") | |
tabbed_interface.launch() | |
# Instantiate and launch the chatbot | |
chatbot = Chatbot() | |
chatbot.launch_interface() | |
# def launch_interface(self): | |
# css_code = """ | |
# .gradio-container { | |
# background-color: #daccdb; | |
# } | |
# /* Button styling for all buttons */ | |
# button { | |
# background-color: #927fc7; /* Default color for all other buttons */ | |
# color: black; | |
# border: 1px solid black; | |
# padding: 10px; | |
# margin-right: 10px; | |
# font-size: 16px; /* Increase font size */ | |
# font-weight: bold; /* Make text bold */ | |
# } | |
# """ | |
# EXAMPLES = ["TDA4 product planning and datasheet release progress? ", | |
# "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", | |
# "Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."] | |
# demo = gr.Interface(fn=self.qa_infer, inputs=[gr.Textbox(label="QUERY", placeholder ="Enter your query here")], allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES"), gr.HTML()], css=css_code) | |
# demo.launch() |