Spaces:
Runtime error
Runtime error
import argparse | |
from pathlib import Path | |
import os | |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
import torch | |
from PIL import Image | |
import io | |
import google.generativeai as genai | |
class Caption: | |
def __init__(self): | |
self.api_key = 'AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA' | |
genai.configure(api_key=self.api_key) | |
self.model = genai.GenerativeModel(model_name="gemini-pro-vision") | |
# self.model = VisionEncoderDecoderModel.from_pretrained( | |
# "nlpconnect/vit-gpt2-image-captioning" | |
# ) | |
# self.feature_extractor = ViTImageProcessor.from_pretrained( | |
# "nlpconnect/vit-gpt2-image-captioning" | |
# ) | |
# self.tokenizer = AutoTokenizer.from_pretrained( | |
# "nlpconnect/vit-gpt2-image-captioning" | |
# ) | |
# # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# self.model.to(self.device) | |
# self.max_length = 16 | |
# self.num_beams = 4 | |
# self.gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams} | |
def predict_step(self,image_paths): | |
images = [] | |
for image_path in image_paths: | |
i_image = Image.open(image_path) | |
if i_image.mode != "RGB": | |
i_image = i_image.convert(mode="RGB") | |
images.append(i_image) | |
pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(self.device) | |
output_ids = self.model.generate(pixel_values, **self.gen_kwargs) | |
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds | |
def predict_from_memory(self, image_buffers): | |
images = [] | |
for image_buffer in image_buffers: | |
# Ensure the buffer is positioned at the start | |
if isinstance(image_buffer, io.BytesIO): | |
image_buffer.seek(0) | |
try: | |
i_image = Image.open(image_buffer) | |
if i_image.mode != "RGB": | |
i_image = i_image.convert("RGB") | |
images.append(i_image) | |
except Exception as e: | |
print(f"Failed to process image buffer: {str(e)}") | |
continue | |
return self.process_images(images) | |
def process_images(self, images): | |
pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(self.device) | |
output_ids = self.model.generate(pixel_values, **self.gen_kwargs) | |
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds | |
def predict_image_caption_gemini(self,img): | |
prompt = "Describe the main focus of this image in detail." | |
response = self.model.generate_content([prompt, img], stream=True) | |
response.resolve() | |
print("Derived data",response.text) | |
return response.text | |
def get_args(self): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( "-i", | |
"--input_img_paths", | |
type=str, | |
default="farmer.jpg", | |
help="img for caption") | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
model = Caption() | |
args = model.get_args() | |
image_paths = [] | |
image_paths.append(args.input_img_paths) | |
print(model.predict_step(image_paths)) |