arjunanand13's picture
Rename app.py to app-2.2.py
2b21093 verified
raw
history blame
16.2 kB
import gradio as gr
import os
import whisper
import cv2
import json
import tempfile
import torch
import transformers
import re
import time
from torch import cuda, bfloat16
from moviepy.editor import VideoFileClip
from image_caption import Caption
from pathlib import Path
from langchain import PromptTemplate
from langchain import LLMChain
from langchain.llms import HuggingFacePipeline
from difflib import SequenceMatcher
import argparse
import shutil
from PIL import Image
import google.generativeai as genai
from huggingface_hub import InferenceClient
class VideoClassifier:
def __init__(self, no_of_frames, mode='interface',model='gemini'):
self.no_of_frames = no_of_frames
self.mode = mode
self.model_name = model.strip().lower()
print(self.model_name)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if self.model_name=='mistral':
print("Setting up Mistral model for Class Selection")
self.setup_mistral_model()
else :
print("Setting up Gemini model for Class Selection")
self.setup_gemini_model()
self.setup_paths()
self.hf_key = os.environ.get("HF_KEY", None)
def setup_paths(self):
self.path = './results'
if os.path.exists(self.path):
shutil.rmtree(self.path)
os.mkdir(self.path)
def setup_gemini_model(self):
self.genai = genai
self.genai.configure(api_key="AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA")
self.genai_model = genai.GenerativeModel('gemini-pro')
self.whisper_model = whisper.load_model("base")
self.img_cap = Caption()
def setup_mistral_space_model(self):
if not self.hf_key:
raise ValueError("Hugging Face API key is not set or invalid.")
self.client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
self.whisper_model = whisper.load_model("base")
self.img_cap = Caption()
def setup_mistral_model(self):
self.model_id = "mistralai/Mistral-7B-Instruct-v0.2"
self.device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
# self.device_name = torch.cuda.get_device_name()
# print(f"Using device: {self.device} ({self.device_name})")
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16,
)
hf_auth = self.hf_key
print(hf_auth)
model_config = transformers.AutoConfig.from_pretrained(
self.model_id,
# use_auth_token=hf_auth
)
self.model = transformers.AutoModelForCausalLM.from_pretrained(
self.model_id,
trust_remote_code=True,
config=model_config,
quantization_config=bnb_config,
# use_auth_token=hf_auth
)
self.model.eval()
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
self.model_id,
# use_auth_token=hf_auth
)
self.generate_text = transformers.pipeline(
model=self.model, tokenizer=self.tokenizer,
return_full_text=True,
task='text-generation',
temperature=0.01,
max_new_tokens=32
)
self.whisper_model = whisper.load_model("base")
self.img_cap = Caption()
self.llm = HuggingFacePipeline(pipeline=self.generate_text)
def audio_extraction(self,video_input):
print(f"Processing video: {video_input} with {self.no_of_frames} frames.")
mp4_file = video_input
video_name = mp4_file.split("/")[-1]
wav_file = "results/audiotrack.wav"
video_clip = VideoFileClip(mp4_file)
audioclip = video_clip.audio
wav_file = audioclip.write_audiofile(wav_file)
audioclip.close()
video_clip.close()
audiotrack = "results/audiotrack.wav"
result = self.whisper_model.transcribe(audiotrack, fp16=False)
transcript = result["text"]
print("TRANSCRIPT",transcript)
return transcript
def generate_text(self, inputs, parameters=None):
if parameters is None:
parameters = {
"temperature": 0.7,
"max_new_tokens": 50,
"top_p": 0.9,
"repetition_penalty": 1.2
}
return self.client(inputs, parameters)
def classify_video(self,video_input):
transcript=self.audio_extraction(video_input)
video = cv2.VideoCapture(video_input)
length = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
no_of_frame = int(self.no_of_frames)
temp_div = length // no_of_frame
currentframe = 50
caption_text = []
for i in range(no_of_frame):
video.set(cv2.CAP_PROP_POS_FRAMES, currentframe)
ret, frame = video.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
content = self.img_cap.predict_image_caption_gemini(image)
print("content", content)
caption_text.append(content)
currentframe += temp_div - 1
else:
break
captions = ", ".join(caption_text)
print("CAPTIONS", captions)
video.release()
cv2.destroyAllWindows()
main_categories = Path("main_classes.txt").read_text()
main_categories_list = ['Automotive', 'Books and Literature', 'Business and Finance', 'Careers', 'Education','Family and Relationships',
'Fine Art', 'Food & Drink', 'Healthy Living', 'Hobbies & Interests', 'Home & Garden','Medical Health', 'Movies', 'Music and Audio',
'News and Politics', 'Personal Finance', 'Pets', 'Pop Culture','Real Estate', 'Religion & Spirituality', 'Science', 'Shopping', 'Sports',
'Style & Fashion','Technology & Computing', 'Television', 'Travel', 'Video Gaming']
generate_kwargs = {
"temperature": 0.9,
"max_new_tokens": 256,
"top_p": 0.95,
"repetition_penalty": 1.0,
"do_sample": True,
"seed": 42,
"return_full_text": False
}
template1 = '''Given below are the different type of main video classes
{main_categories}
You are a text classifier that catergorises the transcript and captions into one main class whose context match with one main class and only generate main class name no need of sub classe or explanation.
Give more importance to Transcript while classifying .
Transcript: {transcript}
Captions: {captions}
Return only the answer chosen from list and nothing else
Main-class => '''
prompt1 = PromptTemplate(template=template1, input_variables=['main_categories', 'transcript', 'captions'])
print("PROMPT 1",prompt1)
# print(self.model)
# print(f"Current model in use: {self.model}")
if self.model_name=='mistral':
try:
chain1 = LLMChain(llm=self.llm, prompt=prompt1)
main_class = chain1.predict(main_categories=main_categories, transcript=transcript, captions=captions)
except:
prompt1 = template1.format(main_categories=main_categories, transcript=transcript, captions=captions)
messages = [{"role": "user", "content": prompt1}]
stream = self.client.chat_completion(messages, max_tokens=100)
main_class = stream.choices[0].message.content.strip()
# output = ""
# for response in stream:
# output += response['token'].text
# print("Streaming output:", output)
# main_class = output.strip()
print(main_class)
print("#######################################################")
pattern = r"Main-class =>\s*(.+)"
match = re.search(pattern, main_class)
if match:
main_class = match.group(1).strip()
else:
main_class = None
else:
prompt_text = template1.format(main_categories=main_categories, transcript=transcript, captions=captions)
response = self.genai_model.generate_content(contents=prompt_text)
main_class = response.text
print(main_class)
print("#######################################################")
print("MAIN CLASS: ",main_class)
def category_class(class_name,categories_list):
def similar(str1, str2):
return SequenceMatcher(None, str1, str2).ratio()
index_no = 0
sim = 0
for sub in categories_list:
res = similar(class_name, sub)
if res>sim:
sim = res
index_no = categories_list.index(sub)
class_name = categories_list[index_no]
return class_name
if main_class not in main_categories_list:
main_class = category_class(main_class,main_categories_list)
print("POST PROCESSED MAIN CLASS : ",main_class)
tier_1_index_no = main_categories_list.index(main_class) + 1
with open('categories_json.txt') as f:
data = json.load(f)
sub_categories_list = data[main_class]
print("SUB CATEGORIES LIST",sub_categories_list)
with open("sub_categories.txt", "w") as f:
no = 1
# print(data[main_class])
for i in data[main_class]:
f.write(str(no)+')'+str(i) + '\n')
no = no+1
sub_categories = Path("sub_categories.txt").read_text()
template2 = '''Given below are the sub classes of {main_class}.
{sub_categories}
You are a text classifier that catergorises the transcript and captions into one sub class whose context match with one sub class and only generate sub class name, Don't give explanation .
Give more importance to Transcript while classifying .
Transcript: {transcript}
Captions: {captions}
Return only the Sub-class answer chosen from list and nothing else
Answer in the format:
Main-class => {main_class}
Sub-class =>
'''
prompt2 = PromptTemplate(template=template2, input_variables=['sub_categories', 'transcript', 'captions','main_class'])
if self.model_name=='mistral':
try:
chain2 = LLMChain(llm=self.llm, prompt=prompt2)
answer = chain2.predict(sub_categories=sub_categories, transcript=transcript, captions=captions,main_class=main_class)
except:
prompt2 = template1.format(main_categories=main_categories, transcript=transcript, captions=captions)
messages = [{"role": "user", "content": prompt1}]
stream = self.client.chat_completion(messages, max_tokens=100)
answer = stream.choices[0].message.content.strip()
print("Preprocess Answer",answer)
pattern = r"Sub-class =>\s*(.+)"
match = re.search(pattern, answer)
if match:
sub_class = match.group(1).strip()
else:
sub_class = None
else:
prompt_text2 = template1.format(main_categories=main_categories, transcript=transcript, captions=captions)
response = self.genai_model.generate_content(contents=prompt_text2)
sub_class = response.text
print("Preprocess Answer",sub_class)
print("SUB CLASS",sub_class)
if sub_class not in sub_categories_list:
sub_class = category_class(sub_class,sub_categories_list)
print("POST PROCESSED SUB CLASS",sub_class)
tier_2_index_no = sub_categories_list.index(sub_class) + 1
print("ANSWER:",sub_class)
final_answer = (f"Tier 1 category : IAB{tier_1_index_no} : {main_class}\nTier 2 category : IAB{tier_1_index_no}-{tier_2_index_no} : {sub_class}")
first_video = os.path.join(os.path.dirname(__file__), "American_football_heads_to_India_clip.mp4")
second_video = os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4")
# return final_answer, first_video, second_video
return final_answer
def save_model_choice(self,model_name):
self.model_name = model_name
if self.model_name=='mistral':
print("Setting up Mistral model for Class Selection")
self.setup_mistral_space_model()
else :
print("Setting up Gemini model for Class Selection")
self.setup_gemini_model()
return "Model selected: " + model_name
def launch_interface(self):
css_code = """
.gradio-container {background-color: #FFFFFF;color:#000000;background-size: 200px; background-image:url(https://gitlab.ignitarium.in/saran/logo/-/raw/aab7c77b4816b8a4bbdc5588eb57ce8b6c15c72d/ign_logo_white.png);background-repeat:no-repeat; position:relative; top:1px; left:5px; padding: 50px;text-align: right;background-position: right top;}
"""
css_code += """
:root {
--body-background-fill: #FFFFFF; /* New value */
}
"""
css_code += """
:root {
--body-background-fill: #000000; /* New value */
}
"""
interface_1 = gr.Interface(
self.save_model_choice,
inputs=gr.Dropdown(choices=['gemini', 'mistral'], label="Select Model", info="Default model: Gemini"),
# outputs=interface_1_output,
outputs="text"
)
demo = gr.Interface(fn=self.classify_video, inputs="playablevideo",allow_flagging='never', examples=[
os.path.join(os.path.dirname(__file__),
"American_football_heads_to_India_clip.mp4"),os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Motorcycle_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Spirituality_1_clip.mp4"),
os.path.join(os.path.dirname(__file__), "Science_clip.mp4")],
cache_examples=False, outputs=["text"],
css=css_code, title="Interactive Advertising Bureau (IAB) compliant Video-Ad classification")
# demo.launch(debug=True)
gr.TabbedInterface([interface_1, demo], ["Model Selection", "Video Classification"]).launch(debug=True)
def run_inference(self, video_path,model):
result = self.classify_video(video_path)
print(result)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some videos.')
parser.add_argument("video_path", nargs='?', default=None, help="Path to the video file")
parser.add_argument("-n", "--no_of_frames", type=int, default=3, help="Number of frames for image captioning")
parser.add_argument("--mode", choices=['interface', 'inference'], default='interface', help="Mode of operation: interface or inference")
parser.add_argument("--model", choices=['gemini','mistral'],default='gemini',help="Model for inference")
args = parser.parse_args()
vc = VideoClassifier(no_of_frames=args.no_of_frames, mode=args.mode , model=args.model)
if args.mode == 'interface':
vc.launch_interface()
elif args.mode == 'inference' and args.video_path and args.model:
vc.run_inference(args.video_path,args.model)
else:
print("Error: No video path/model provided for inference mode.")
#Usage
### python main.py --mode interface
### python main.py videos/Spirituality_1_clip.mp4 -n 3 --mode inference --model gemini