Spaces:
Build error
Build error
update
Browse files
app.py
CHANGED
|
@@ -1,17 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
|
|
|
| 3 |
from huggingface_hub import snapshot_download
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
return
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from modelscope.pipelines import pipeline
|
| 3 |
+
from modelscope.utils.constant import Tasks
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# Step 1: Download the model
|
| 8 |
+
model_dir = snapshot_download('opendatalab/PDF-Extract-Kit-1.0')
|
| 9 |
|
| 10 |
+
# Step 2: Initialize pipeline
|
| 11 |
+
pipe = pipeline(
|
| 12 |
+
task=Tasks.document_segmentation,
|
| 13 |
+
model=model_dir
|
| 14 |
+
)
|
| 15 |
|
| 16 |
+
# Step 3: Define inference function
|
| 17 |
+
def extract_info_from_pdf(pdf_file):
|
| 18 |
+
result = pipe({'file': pdf_file.name})
|
| 19 |
+
return str(result)
|
| 20 |
|
| 21 |
+
# Step 4: Gradio UI
|
| 22 |
+
gr.Interface(
|
| 23 |
+
fn=extract_info_from_pdf,
|
| 24 |
+
inputs=gr.File(type="binary", label="Upload PDF"),
|
| 25 |
+
outputs="text",
|
| 26 |
+
title="PDF Extractor (PDF-Extract-Kit)"
|
| 27 |
+
).launch()
|