DiffLinker / src /edm.py
igashov
progress bar
e847c29
import torch
import torch.nn.functional as F
import numpy as np
import math
from src import utils
from src.egnn import Dynamics
from src.noise import GammaNetwork, PredefinedNoiseSchedule
from typing import Union
from tqdm import tqdm
from pdb import set_trace
class EDM(torch.nn.Module):
def __init__(
self,
dynamics: Union[Dynamics],
in_node_nf: int,
n_dims: int,
timesteps: int = 1000,
noise_schedule='learned',
noise_precision=1e-4,
loss_type='vlb',
norm_values=(1., 1., 1.),
norm_biases=(None, 0., 0.),
):
super().__init__()
if noise_schedule == 'learned':
assert loss_type == 'vlb', 'A noise schedule can only be learned with a vlb objective'
self.gamma = GammaNetwork()
else:
self.gamma = PredefinedNoiseSchedule(noise_schedule, timesteps=timesteps, precision=noise_precision)
self.dynamics = dynamics
self.in_node_nf = in_node_nf
self.n_dims = n_dims
self.T = timesteps
self.norm_values = norm_values
self.norm_biases = norm_biases
def forward(self, x, h, node_mask, fragment_mask, linker_mask, edge_mask, context=None):
# Normalization and concatenation
x, h = self.normalize(x, h)
xh = torch.cat([x, h], dim=2)
# Volume change loss term
delta_log_px = self.delta_log_px(linker_mask).mean()
# Sample t
t_int = torch.randint(0, self.T + 1, size=(x.size(0), 1), device=x.device).float()
s_int = t_int - 1
t = t_int / self.T
s = s_int / self.T
# Masks for t=0 and t>0
t_is_zero = (t_int == 0).squeeze().float()
t_is_not_zero = 1 - t_is_zero
# Compute gamma_t and gamma_s according to the noise schedule
gamma_t = self.inflate_batch_array(self.gamma(t), x)
gamma_s = self.inflate_batch_array(self.gamma(s), x)
# Compute alpha_t and sigma_t from gamma
alpha_t = self.alpha(gamma_t, x)
sigma_t = self.sigma(gamma_t, x)
# Sample noise
# Note: only for linker
eps_t = self.sample_combined_position_feature_noise(n_samples=x.size(0), n_nodes=x.size(1), mask=linker_mask)
# Sample z_t given x, h for timestep t, from q(z_t | x, h)
# Note: keep fragments unchanged
z_t = alpha_t * xh + sigma_t * eps_t
z_t = xh * fragment_mask + z_t * linker_mask
# Neural net prediction
eps_t_hat = self.dynamics.forward(
xh=z_t,
t=t,
node_mask=node_mask,
linker_mask=linker_mask,
context=context,
edge_mask=edge_mask,
)
eps_t_hat = eps_t_hat * linker_mask
# Computing basic error (further used for computing NLL and L2-loss)
error_t = self.sum_except_batch((eps_t - eps_t_hat) ** 2)
# Computing L2-loss for t>0
normalization = (self.n_dims + self.in_node_nf) * self.numbers_of_nodes(linker_mask)
l2_loss = error_t / normalization
l2_loss = l2_loss.mean()
# The KL between q(z_T | x) and p(z_T) = Normal(0, 1) (should be close to zero)
kl_prior = self.kl_prior(xh, linker_mask).mean()
# Computing NLL middle term
SNR_weight = (self.SNR(gamma_s - gamma_t) - 1).squeeze(1).squeeze(1)
loss_term_t = self.T * 0.5 * SNR_weight * error_t
loss_term_t = (loss_term_t * t_is_not_zero).sum() / t_is_not_zero.sum()
# Computing noise returned by dynamics
noise = torch.norm(eps_t_hat, dim=[1, 2])
noise_t = (noise * t_is_not_zero).sum() / t_is_not_zero.sum()
if t_is_zero.sum() > 0:
# The _constants_ depending on sigma_0 from the
# cross entropy term E_q(z0 | x) [log p(x | z0)]
neg_log_constants = -self.log_constant_of_p_x_given_z0(x, linker_mask)
# Computes the L_0 term (even if gamma_t is not actually gamma_0)
# and selected only relevant via masking
loss_term_0 = -self.log_p_xh_given_z0_without_constants(h, z_t, gamma_t, eps_t, eps_t_hat, linker_mask)
loss_term_0 = loss_term_0 + neg_log_constants
loss_term_0 = (loss_term_0 * t_is_zero).sum() / t_is_zero.sum()
# Computing noise returned by dynamics
noise_0 = (noise * t_is_zero).sum() / t_is_zero.sum()
else:
loss_term_0 = 0.
noise_0 = 0.
return delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0
@torch.no_grad()
def sample_chain(self, x, h, node_mask, fragment_mask, linker_mask, edge_mask, context, keep_frames=None):
n_samples = x.size(0)
n_nodes = x.size(1)
# Normalization and concatenation
x, h, = self.normalize(x, h)
xh = torch.cat([x, h], dim=2)
# Initial linker sampling from N(0, I)
z = self.sample_combined_position_feature_noise(n_samples, n_nodes, mask=linker_mask)
z = xh * fragment_mask + z * linker_mask
if keep_frames is None:
keep_frames = self.T
else:
assert keep_frames <= self.T
chain = torch.zeros((keep_frames,) + z.size(), device=z.device)
# Sample p(z_s | z_t)
for s in tqdm(reversed(range(0, self.T)), total=self.T):
s_array = torch.full((n_samples, 1), fill_value=s, device=z.device)
t_array = s_array + 1
s_array = s_array / self.T
t_array = t_array / self.T
z = self.sample_p_zs_given_zt_only_linker(
s=s_array,
t=t_array,
z_t=z,
node_mask=node_mask,
fragment_mask=fragment_mask,
linker_mask=linker_mask,
edge_mask=edge_mask,
context=context,
)
write_index = (s * keep_frames) // self.T
chain[write_index] = self.unnormalize_z(z)
# Finally sample p(x, h | z_0)
x, h = self.sample_p_xh_given_z0_only_linker(
z_0=z,
node_mask=node_mask,
fragment_mask=fragment_mask,
linker_mask=linker_mask,
edge_mask=edge_mask,
context=context,
)
chain[0] = torch.cat([x, h], dim=2)
return chain
def sample_p_zs_given_zt_only_linker(self, s, t, z_t, node_mask, fragment_mask, linker_mask, edge_mask, context):
"""Samples from zs ~ p(zs | zt). Only used during sampling. Samples only linker features and coords"""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, z_t)
sigma_s = self.sigma(gamma_s, target_tensor=z_t)
sigma_t = self.sigma(gamma_t, target_tensor=z_t)
# Neural net prediction.
eps_hat = self.dynamics.forward(
xh=z_t,
t=t,
node_mask=node_mask,
linker_mask=linker_mask,
context=context,
edge_mask=edge_mask,
)
eps_hat = eps_hat * linker_mask
# Compute mu for p(z_s | z_t)
mu = z_t / alpha_t_given_s - (sigma2_t_given_s / alpha_t_given_s / sigma_t) * eps_hat
# Compute sigma for p(z_s | z_t)
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample z_s given the parameters derived from zt
z_s = self.sample_normal(mu, sigma, linker_mask)
z_s = z_t * fragment_mask + z_s * linker_mask
return z_s
def sample_p_xh_given_z0_only_linker(self, z_0, node_mask, fragment_mask, linker_mask, edge_mask, context):
"""Samples x ~ p(x|z0). Samples only linker features and coords"""
zeros = torch.zeros(size=(z_0.size(0), 1), device=z_0.device)
gamma_0 = self.gamma(zeros)
# Computes sqrt(sigma_0^2 / alpha_0^2)
sigma_x = self.SNR(-0.5 * gamma_0).unsqueeze(1)
eps_hat = self.dynamics.forward(
t=zeros,
xh=z_0,
node_mask=node_mask,
linker_mask=linker_mask,
edge_mask=edge_mask,
context=context
)
eps_hat = eps_hat * linker_mask
mu_x = self.compute_x_pred(eps_t=eps_hat, z_t=z_0, gamma_t=gamma_0)
xh = self.sample_normal(mu=mu_x, sigma=sigma_x, node_mask=linker_mask)
xh = z_0 * fragment_mask + xh * linker_mask
x, h = xh[:, :, :self.n_dims], xh[:, :, self.n_dims:]
x, h = self.unnormalize(x, h)
h = F.one_hot(torch.argmax(h, dim=2), self.in_node_nf) * node_mask
return x, h
def compute_x_pred(self, eps_t, z_t, gamma_t):
"""Computes x_pred, i.e. the most likely prediction of x."""
sigma_t = self.sigma(gamma_t, target_tensor=eps_t)
alpha_t = self.alpha(gamma_t, target_tensor=eps_t)
x_pred = 1. / alpha_t * (z_t - sigma_t * eps_t)
return x_pred
def kl_prior(self, xh, mask):
"""
Computes the KL between q(z1 | x) and the prior p(z1) = Normal(0, 1).
This is essentially a lot of work for something that is in practice negligible in the loss.
However, you compute it so that you see it when you've made a mistake in your noise schedule.
"""
# Compute the last alpha value, alpha_T
ones = torch.ones((xh.size(0), 1), device=xh.device)
gamma_T = self.gamma(ones)
alpha_T = self.alpha(gamma_T, xh)
# Compute means
mu_T = alpha_T * xh
mu_T_x, mu_T_h = mu_T[:, :, :self.n_dims], mu_T[:, :, self.n_dims:]
# Compute standard deviations (only batch axis for x-part, inflated for h-part)
sigma_T_x = self.sigma(gamma_T, mu_T_x).view(-1) # Remove inflate, only keep batch dimension for x-part
sigma_T_h = self.sigma(gamma_T, mu_T_h)
# Compute KL for h-part
zeros, ones = torch.zeros_like(mu_T_h), torch.ones_like(sigma_T_h)
kl_distance_h = self.gaussian_kl(mu_T_h, sigma_T_h, zeros, ones)
# Compute KL for x-part
zeros, ones = torch.zeros_like(mu_T_x), torch.ones_like(sigma_T_x)
d = self.dimensionality(mask)
kl_distance_x = self.gaussian_kl_for_dimension(mu_T_x, sigma_T_x, zeros, ones, d=d)
return kl_distance_x + kl_distance_h
def log_constant_of_p_x_given_z0(self, x, mask):
batch_size = x.size(0)
degrees_of_freedom_x = self.dimensionality(mask)
zeros = torch.zeros((batch_size, 1), device=x.device)
gamma_0 = self.gamma(zeros)
# Recall that sigma_x = sqrt(sigma_0^2 / alpha_0^2) = SNR(-0.5 gamma_0)
log_sigma_x = 0.5 * gamma_0.view(batch_size)
return degrees_of_freedom_x * (- log_sigma_x - 0.5 * np.log(2 * np.pi))
def log_p_xh_given_z0_without_constants(self, h, z_0, gamma_0, eps, eps_hat, mask, epsilon=1e-10):
# Discrete properties are predicted directly from z_0
z_h = z_0[:, :, self.n_dims:]
# Take only part over x
eps_x = eps[:, :, :self.n_dims]
eps_hat_x = eps_hat[:, :, :self.n_dims]
# Compute sigma_0 and rescale to the integer scale of the data
sigma_0 = self.sigma(gamma_0, target_tensor=z_0) * self.norm_values[1]
# Computes the error for the distribution N(x | 1 / alpha_0 z_0 + sigma_0/alpha_0 eps_0, sigma_0 / alpha_0),
# the weighting in the epsilon parametrization is exactly '1'
log_p_x_given_z_without_constants = -0.5 * self.sum_except_batch((eps_x - eps_hat_x) ** 2)
# Categorical features
# Compute delta indicator masks
h = h * self.norm_values[1] + self.norm_biases[1]
estimated_h = z_h * self.norm_values[1] + self.norm_biases[1]
# Centered h_cat around 1, since onehot encoded
centered_h = estimated_h - 1
# Compute integrals from 0.5 to 1.5 of the normal distribution
# N(mean=centered_h_cat, stdev=sigma_0_cat)
log_p_h_proportional = torch.log(
self.cdf_standard_gaussian((centered_h + 0.5) / sigma_0) -
self.cdf_standard_gaussian((centered_h - 0.5) / sigma_0) +
epsilon
)
# Normalize the distribution over the categories
log_Z = torch.logsumexp(log_p_h_proportional, dim=2, keepdim=True)
log_probabilities = log_p_h_proportional - log_Z
# Select the log_prob of the current category using the onehot representation
log_p_h_given_z = self.sum_except_batch(log_probabilities * h * mask)
# Combine log probabilities for x and h
log_p_xh_given_z = log_p_x_given_z_without_constants + log_p_h_given_z
return log_p_xh_given_z
def sample_combined_position_feature_noise(self, n_samples, n_nodes, mask):
z_x = utils.sample_gaussian_with_mask(
size=(n_samples, n_nodes, self.n_dims),
device=mask.device,
node_mask=mask
)
z_h = utils.sample_gaussian_with_mask(
size=(n_samples, n_nodes, self.in_node_nf),
device=mask.device,
node_mask=mask
)
z = torch.cat([z_x, z_h], dim=2)
return z
def sample_normal(self, mu, sigma, node_mask):
"""Samples from a Normal distribution."""
eps = self.sample_combined_position_feature_noise(mu.size(0), mu.size(1), node_mask)
return mu + sigma * eps
def normalize(self, x, h):
new_x = x / self.norm_values[0]
new_h = (h.float() - self.norm_biases[1]) / self.norm_values[1]
return new_x, new_h
def unnormalize(self, x, h):
new_x = x * self.norm_values[0]
new_h = h * self.norm_values[1] + self.norm_biases[1]
return new_x, new_h
def unnormalize_z(self, z):
assert z.size(2) == self.n_dims + self.in_node_nf
x, h = z[:, :, :self.n_dims], z[:, :, self.n_dims:]
x, h = self.unnormalize(x, h)
return torch.cat([x, h], dim=2)
def delta_log_px(self, mask):
return -self.dimensionality(mask) * np.log(self.norm_values[0])
def dimensionality(self, mask):
return self.numbers_of_nodes(mask) * self.n_dims
def sigma(self, gamma, target_tensor):
"""Computes sigma given gamma."""
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(gamma)), target_tensor)
def alpha(self, gamma, target_tensor):
"""Computes alpha given gamma."""
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(-gamma)), target_tensor)
def SNR(self, gamma):
"""Computes signal to noise ratio (alpha^2/sigma^2) given gamma."""
return torch.exp(-gamma)
def sigma_and_alpha_t_given_s(self, gamma_t: torch.Tensor, gamma_s: torch.Tensor, target_tensor: torch.Tensor):
"""
Computes sigma t given s, using gamma_t and gamma_s. Used during sampling.
These are defined as:
alpha t given s = alpha t / alpha s,
sigma t given s = sqrt(1 - (alpha t given s) ^2 ).
"""
sigma2_t_given_s = self.inflate_batch_array(
-self.expm1(self.softplus(gamma_s) - self.softplus(gamma_t)),
target_tensor
)
# alpha_t_given_s = alpha_t / alpha_s
log_alpha2_t = F.logsigmoid(-gamma_t)
log_alpha2_s = F.logsigmoid(-gamma_s)
log_alpha2_t_given_s = log_alpha2_t - log_alpha2_s
alpha_t_given_s = torch.exp(0.5 * log_alpha2_t_given_s)
alpha_t_given_s = self.inflate_batch_array(alpha_t_given_s, target_tensor)
sigma_t_given_s = torch.sqrt(sigma2_t_given_s)
return sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s
@staticmethod
def numbers_of_nodes(mask):
return torch.sum(mask.squeeze(2), dim=1)
@staticmethod
def inflate_batch_array(array, target):
"""
Inflates the batch array (array) with only a single axis (i.e. shape = (batch_size,),
or possibly more empty axes (i.e. shape (batch_size, 1, ..., 1)) to match the target shape.
"""
target_shape = (array.size(0),) + (1,) * (len(target.size()) - 1)
return array.view(target_shape)
@staticmethod
def sum_except_batch(x):
return x.view(x.size(0), -1).sum(-1)
@staticmethod
def expm1(x: torch.Tensor) -> torch.Tensor:
return torch.expm1(x)
@staticmethod
def softplus(x: torch.Tensor) -> torch.Tensor:
return F.softplus(x)
@staticmethod
def cdf_standard_gaussian(x):
return 0.5 * (1. + torch.erf(x / math.sqrt(2)))
@staticmethod
def gaussian_kl(q_mu, q_sigma, p_mu, p_sigma):
"""
Computes the KL distance between two normal distributions.
Args:
q_mu: Mean of distribution q.
q_sigma: Standard deviation of distribution q.
p_mu: Mean of distribution p.
p_sigma: Standard deviation of distribution p.
Returns:
The KL distance, summed over all dimensions except the batch dim.
"""
kl = torch.log(p_sigma / q_sigma) + 0.5 * (q_sigma ** 2 + (q_mu - p_mu) ** 2) / (p_sigma ** 2) - 0.5
return EDM.sum_except_batch(kl)
@staticmethod
def gaussian_kl_for_dimension(q_mu, q_sigma, p_mu, p_sigma, d):
"""
Computes the KL distance between two normal distributions taking the dimension into account.
Args:
q_mu: Mean of distribution q.
q_sigma: Standard deviation of distribution q.
p_mu: Mean of distribution p.
p_sigma: Standard deviation of distribution p.
d: dimension
Returns:
The KL distance, summed over all dimensions except the batch dim.
"""
mu_norm_2 = EDM.sum_except_batch((q_mu - p_mu) ** 2)
return d * torch.log(p_sigma / q_sigma) + 0.5 * (d * q_sigma ** 2 + mu_norm_2) / (p_sigma ** 2) - 0.5 * d
class InpaintingEDM(EDM):
def forward(self, x, h, node_mask, fragment_mask, linker_mask, edge_mask, context=None):
# Normalization and concatenation
x, h = self.normalize(x, h)
xh = torch.cat([x, h], dim=2)
# Volume change loss term
delta_log_px = self.delta_log_px(node_mask).mean()
# Sample t
t_int = torch.randint(0, self.T + 1, size=(x.size(0), 1), device=x.device).float()
s_int = t_int - 1
t = t_int / self.T
s = s_int / self.T
# Masks for t=0 and t>0
t_is_zero = (t_int == 0).squeeze().float()
t_is_not_zero = 1 - t_is_zero
# Compute gamma_t and gamma_s according to the noise schedule
gamma_t = self.inflate_batch_array(self.gamma(t), x)
gamma_s = self.inflate_batch_array(self.gamma(s), x)
# Compute alpha_t and sigma_t from gamma
alpha_t = self.alpha(gamma_t, x)
sigma_t = self.sigma(gamma_t, x)
# Sample noise
eps_t = self.sample_combined_position_feature_noise(n_samples=x.size(0), n_nodes=x.size(1), mask=node_mask)
# Sample z_t given x, h for timestep t, from q(z_t | x, h)
# Note: keep fragments unchanged
z_t = alpha_t * xh + sigma_t * eps_t
# Neural net prediction
eps_t_hat = self.dynamics.forward(
xh=z_t,
t=t,
node_mask=node_mask,
linker_mask=None,
context=context,
edge_mask=edge_mask,
)
# Computing basic error (further used for computing NLL and L2-loss)
error_t = self.sum_except_batch((eps_t - eps_t_hat) ** 2)
# Computing L2-loss for t>0
normalization = (self.n_dims + self.in_node_nf) * self.numbers_of_nodes(node_mask)
l2_loss = error_t / normalization
l2_loss = l2_loss.mean()
# The KL between q(z_T | x) and p(z_T) = Normal(0, 1) (should be close to zero)
kl_prior = self.kl_prior(xh, node_mask).mean()
# Computing NLL middle term
SNR_weight = (self.SNR(gamma_s - gamma_t) - 1).squeeze(1).squeeze(1)
loss_term_t = self.T * 0.5 * SNR_weight * error_t
loss_term_t = (loss_term_t * t_is_not_zero).sum() / t_is_not_zero.sum()
# Computing noise returned by dynamics
noise = torch.norm(eps_t_hat, dim=[1, 2])
noise_t = (noise * t_is_not_zero).sum() / t_is_not_zero.sum()
if t_is_zero.sum() > 0:
# The _constants_ depending on sigma_0 from the
# cross entropy term E_q(z0 | x) [log p(x | z0)]
neg_log_constants = -self.log_constant_of_p_x_given_z0(x, node_mask)
# Computes the L_0 term (even if gamma_t is not actually gamma_0)
# and selected only relevant via masking
loss_term_0 = -self.log_p_xh_given_z0_without_constants(h, z_t, gamma_t, eps_t, eps_t_hat, node_mask)
loss_term_0 = loss_term_0 + neg_log_constants
loss_term_0 = (loss_term_0 * t_is_zero).sum() / t_is_zero.sum()
# Computing noise returned by dynamics
noise_0 = (noise * t_is_zero).sum() / t_is_zero.sum()
else:
loss_term_0 = 0.
noise_0 = 0.
return delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0
@torch.no_grad()
def sample_chain(self, x, h, node_mask, edge_mask, fragment_mask, linker_mask, context, keep_frames=None):
n_samples = x.size(0)
n_nodes = x.size(1)
# Normalization and concatenation
x, h, = self.normalize(x, h)
xh = torch.cat([x, h], dim=2)
# Sampling initial noise
z = self.sample_combined_position_feature_noise(n_samples, n_nodes, node_mask)
if keep_frames is None:
keep_frames = self.T
else:
assert keep_frames <= self.T
chain = torch.zeros((keep_frames,) + z.size(), device=z.device)
# Sample p(z_s | z_t)
for s in tqdm(reversed(range(0, self.T)), total=self.T):
s_array = torch.full((n_samples, 1), fill_value=s, device=z.device)
t_array = s_array + 1
s_array = s_array / self.T
t_array = t_array / self.T
z_linker_only_sampled = self.sample_p_zs_given_zt(
s=s_array,
t=t_array,
z_t=z,
node_mask=node_mask,
edge_mask=edge_mask,
context=context,
)
z_fragments_only_sampled = self.sample_q_zs_given_zt_and_x(
s=s_array,
t=t_array,
z_t=z,
x=xh * fragment_mask,
node_mask=fragment_mask,
)
z = z_linker_only_sampled * linker_mask + z_fragments_only_sampled * fragment_mask
# Project down to avoid numerical runaway of the center of gravity
z_x = utils.remove_mean_with_mask(z[:, :, :self.n_dims], node_mask)
z_h = z[:, :, self.n_dims:]
z = torch.cat([z_x, z_h], dim=2)
# Saving step to the chain
write_index = (s * keep_frames) // self.T
chain[write_index] = self.unnormalize_z(z)
# Finally sample p(x, h | z_0)
x_out_linker, h_out_linker = self.sample_p_xh_given_z0(
z_0=z,
node_mask=node_mask,
edge_mask=edge_mask,
context=context,
)
x_out_fragments, h_out_fragments = self.sample_q_xh_given_z0_and_x(z_0=z, node_mask=node_mask)
xh_out_linker = torch.cat([x_out_linker, h_out_linker], dim=2)
xh_out_fragments = torch.cat([x_out_fragments, h_out_fragments], dim=2)
xh_out = xh_out_linker * linker_mask + xh_out_fragments * fragment_mask
# Overwrite last frame with the resulting x and h
chain[0] = xh_out
return chain
def sample_p_zs_given_zt(self, s, t, z_t, node_mask, edge_mask, context):
"""Samples from zs ~ p(zs | zt). Only used during sampling"""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, z_t)
sigma_s = self.sigma(gamma_s, target_tensor=z_t)
sigma_t = self.sigma(gamma_t, target_tensor=z_t)
# Neural net prediction.
eps_hat = self.dynamics.forward(
xh=z_t,
t=t,
node_mask=node_mask,
linker_mask=None,
edge_mask=edge_mask,
context=context
)
# Checking that epsilon is centered around linker COM
utils.assert_mean_zero_with_mask(eps_hat[:, :, :self.n_dims], node_mask)
# Compute mu for p(z_s | z_t)
mu = z_t / alpha_t_given_s - (sigma2_t_given_s / alpha_t_given_s / sigma_t) * eps_hat
# Compute sigma for p(z_s | z_t)
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample z_s given the parameters derived from z_t
z_s = self.sample_normal(mu, sigma, node_mask)
return z_s
def sample_q_zs_given_zt_and_x(self, s, t, z_t, x, node_mask):
"""Samples from zs ~ q(zs | zt, x). Only used during sampling. Samples only linker features and coords"""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, z_t)
sigma_s = self.sigma(gamma_s, target_tensor=z_t)
sigma_t = self.sigma(gamma_t, target_tensor=z_t)
alpha_s = self.alpha(gamma_s, x)
mu = (
alpha_t_given_s * (sigma_s ** 2) / (sigma_t ** 2) * z_t +
alpha_s * sigma2_t_given_s / (sigma_t ** 2) * x
)
# Compute sigma for p(zs | zt)
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample zs given the parameters derived from zt
z_s = self.sample_normal(mu, sigma, node_mask)
return z_s
def sample_p_xh_given_z0(self, z_0, node_mask, edge_mask, context):
"""Samples x ~ p(x|z0). Samples only linker features and coords"""
zeros = torch.zeros(size=(z_0.size(0), 1), device=z_0.device)
gamma_0 = self.gamma(zeros)
# Computes sqrt(sigma_0^2 / alpha_0^2)
sigma_x = self.SNR(-0.5 * gamma_0).unsqueeze(1)
eps_hat = self.dynamics.forward(
xh=z_0,
t=zeros,
node_mask=node_mask,
linker_mask=None,
edge_mask=edge_mask,
context=context
)
utils.assert_mean_zero_with_mask(eps_hat[:, :, :self.n_dims], node_mask)
mu_x = self.compute_x_pred(eps_hat, z_0, gamma_0)
xh = self.sample_normal(mu=mu_x, sigma=sigma_x, node_mask=node_mask)
x, h = xh[:, :, :self.n_dims], xh[:, :, self.n_dims:]
x, h = self.unnormalize(x, h)
h = F.one_hot(torch.argmax(h, dim=2), self.in_node_nf) * node_mask
return x, h
def sample_q_xh_given_z0_and_x(self, z_0, node_mask):
"""Samples x ~ q(x|z0). Samples only linker features and coords"""
zeros = torch.zeros(size=(z_0.size(0), 1), device=z_0.device)
gamma_0 = self.gamma(zeros)
alpha_0 = self.alpha(gamma_0, z_0)
sigma_0 = self.sigma(gamma_0, z_0)
eps = self.sample_combined_position_feature_noise(z_0.size(0), z_0.size(1), node_mask)
xh = (1 / alpha_0) * z_0 - (sigma_0 / alpha_0) * eps
x, h = xh[:, :, :self.n_dims], xh[:, :, self.n_dims:]
x, h = self.unnormalize(x, h)
h = F.one_hot(torch.argmax(h, dim=2), self.in_node_nf) * node_mask
return x, h
def sample_combined_position_feature_noise(self, n_samples, n_nodes, mask):
z_x = utils.sample_center_gravity_zero_gaussian_with_mask(
size=(n_samples, n_nodes, self.n_dims),
device=mask.device,
node_mask=mask
)
z_h = utils.sample_gaussian_with_mask(
size=(n_samples, n_nodes, self.in_node_nf),
device=mask.device,
node_mask=mask
)
z = torch.cat([z_x, z_h], dim=2)
return z
def dimensionality(self, mask):
return (self.numbers_of_nodes(mask) - 1) * self.n_dims