Spaces:
Sleeping
Sleeping
import numpy as np | |
import os | |
import pytorch_lightning as pl | |
import torch | |
import wandb | |
from src import metrics, utils, delinker | |
from src.const import LINKER_SIZE_DIST | |
from src.egnn import Dynamics, DynamicsWithPockets | |
from src.edm import EDM, InpaintingEDM | |
from src.datasets import ( | |
ZincDataset, MOADDataset, create_templates_for_linker_generation, get_dataloader, collate | |
) | |
from src.linker_size import DistributionNodes | |
from src.molecule_builder import build_molecules | |
from src.visualizer import save_xyz_file, visualize_chain | |
from typing import Dict, List, Optional | |
from tqdm import tqdm | |
from pdb import set_trace | |
def get_activation(activation): | |
print(activation) | |
if activation == 'silu': | |
return torch.nn.SiLU() | |
else: | |
raise Exception("activation fn not supported yet. Add it here.") | |
class DDPM(pl.LightningModule): | |
train_dataset = None | |
val_dataset = None | |
test_dataset = None | |
starting_epoch = None | |
metrics: Dict[str, List[float]] = {} | |
FRAMES = 100 | |
def __init__( | |
self, | |
in_node_nf, n_dims, context_node_nf, hidden_nf, activation, tanh, n_layers, attention, norm_constant, | |
inv_sublayers, sin_embedding, normalization_factor, aggregation_method, | |
diffusion_steps, diffusion_noise_schedule, diffusion_noise_precision, diffusion_loss_type, | |
normalize_factors, include_charges, model, | |
data_path, train_data_prefix, val_data_prefix, batch_size, lr, torch_device, test_epochs, n_stability_samples, | |
normalization=None, log_iterations=None, samples_dir=None, data_augmentation=False, | |
center_of_mass='fragments', inpainting=False, anchors_context=True, | |
): | |
super(DDPM, self).__init__() | |
self.save_hyperparameters() | |
self.data_path = data_path | |
self.train_data_prefix = train_data_prefix | |
self.val_data_prefix = val_data_prefix | |
self.batch_size = batch_size | |
self.lr = lr | |
self.torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.include_charges = include_charges | |
self.test_epochs = test_epochs | |
self.n_stability_samples = n_stability_samples | |
self.log_iterations = log_iterations | |
self.samples_dir = samples_dir | |
self.data_augmentation = data_augmentation | |
self.center_of_mass = center_of_mass | |
self.inpainting = inpainting | |
self.loss_type = diffusion_loss_type | |
self.n_dims = n_dims | |
self.num_classes = in_node_nf - include_charges | |
self.include_charges = include_charges | |
self.anchors_context = anchors_context | |
self.is_geom = ('geom' in self.train_data_prefix) or ('MOAD' in self.train_data_prefix) | |
if type(activation) is str: | |
activation = get_activation(activation) | |
dynamics_class = DynamicsWithPockets if '.' in train_data_prefix else Dynamics | |
dynamics = dynamics_class( | |
in_node_nf=in_node_nf, | |
n_dims=n_dims, | |
context_node_nf=context_node_nf, | |
device=self.torch_device, | |
hidden_nf=hidden_nf, | |
activation=activation, | |
n_layers=n_layers, | |
attention=attention, | |
tanh=tanh, | |
norm_constant=norm_constant, | |
inv_sublayers=inv_sublayers, | |
sin_embedding=sin_embedding, | |
normalization_factor=normalization_factor, | |
aggregation_method=aggregation_method, | |
model=model, | |
normalization=normalization, | |
centering=inpainting, | |
) | |
edm_class = InpaintingEDM if inpainting else EDM | |
self.edm = edm_class( | |
dynamics=dynamics, | |
in_node_nf=in_node_nf, | |
n_dims=n_dims, | |
timesteps=diffusion_steps, | |
noise_schedule=diffusion_noise_schedule, | |
noise_precision=diffusion_noise_precision, | |
loss_type=diffusion_loss_type, | |
norm_values=normalize_factors, | |
) | |
self.linker_size_sampler = DistributionNodes(LINKER_SIZE_DIST) | |
def setup(self, stage: Optional[str] = None): | |
dataset_type = MOADDataset if '.' in self.train_data_prefix else ZincDataset | |
if stage == 'fit': | |
self.is_geom = ('geom' in self.train_data_prefix) or ('MOAD' in self.train_data_prefix) | |
self.train_dataset = dataset_type( | |
data_path=self.data_path, | |
prefix=self.train_data_prefix, | |
device=self.torch_device | |
) | |
self.val_dataset = dataset_type( | |
data_path=self.data_path, | |
prefix=self.val_data_prefix, | |
device=self.torch_device | |
) | |
elif stage == 'val': | |
self.is_geom = ('geom' in self.val_data_prefix) or ('MOAD' in self.val_data_prefix) | |
self.val_dataset = dataset_type( | |
data_path=self.data_path, | |
prefix=self.val_data_prefix, | |
device=self.torch_device | |
) | |
else: | |
raise NotImplementedError | |
def train_dataloader(self, collate_fn=collate): | |
return get_dataloader(self.train_dataset, self.batch_size, collate_fn=collate_fn, shuffle=True) | |
def val_dataloader(self, collate_fn=collate): | |
return get_dataloader(self.val_dataset, self.batch_size, collate_fn=collate_fn) | |
def test_dataloader(self, collate_fn=collate): | |
return get_dataloader(self.test_dataset, self.batch_size, collate_fn=collate_fn) | |
def forward(self, data, training): | |
x = data['positions'] | |
h = data['one_hot'] | |
node_mask = data['atom_mask'] | |
edge_mask = data['edge_mask'] | |
anchors = data['anchors'] | |
fragment_mask = data['fragment_mask'] | |
linker_mask = data['linker_mask'] | |
# Anchors and fragments labels are used as context | |
if self.anchors_context: | |
context = torch.cat([anchors, fragment_mask], dim=-1) | |
else: | |
context = fragment_mask | |
# Add information about pocket to the context | |
if '.' in self.train_data_prefix: | |
fragment_pocket_mask = fragment_mask | |
fragment_only_mask = data['fragment_only_mask'] | |
pocket_only_mask = fragment_pocket_mask - fragment_only_mask | |
if self.anchors_context: | |
context = torch.cat([anchors, fragment_only_mask, pocket_only_mask], dim=-1) | |
else: | |
context = torch.cat([fragment_only_mask, pocket_only_mask], dim=-1) | |
# Removing COM of fragment from the atom coordinates | |
if self.inpainting: | |
center_of_mass_mask = node_mask | |
elif self.center_of_mass == 'fragments': | |
center_of_mass_mask = fragment_mask | |
elif self.center_of_mass == 'anchors': | |
center_of_mass_mask = anchors | |
else: | |
raise NotImplementedError(self.center_of_mass) | |
x = utils.remove_partial_mean_with_mask(x, node_mask, center_of_mass_mask) | |
utils.assert_partial_mean_zero_with_mask(x, node_mask, center_of_mass_mask) | |
# Applying random rotation | |
if training and self.data_augmentation: | |
x = utils.random_rotation(x) | |
return self.edm.forward( | |
x=x, | |
h=h, | |
node_mask=node_mask, | |
fragment_mask=fragment_mask, | |
linker_mask=linker_mask, | |
edge_mask=edge_mask, | |
context=context | |
) | |
def training_step(self, data, *args): | |
delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0 = self.forward(data, training=True) | |
vlb_loss = kl_prior + loss_term_t + loss_term_0 - delta_log_px | |
if self.loss_type == 'l2': | |
loss = l2_loss | |
elif self.loss_type == 'vlb': | |
loss = vlb_loss | |
else: | |
raise NotImplementedError(self.loss_type) | |
training_metrics = { | |
'loss': loss, | |
'delta_log_px': delta_log_px, | |
'kl_prior': kl_prior, | |
'loss_term_t': loss_term_t, | |
'loss_term_0': loss_term_0, | |
'l2_loss': l2_loss, | |
'vlb_loss': vlb_loss, | |
'noise_t': noise_t, | |
'noise_0': noise_0 | |
} | |
if self.log_iterations is not None and self.global_step % self.log_iterations == 0: | |
for metric_name, metric in training_metrics.items(): | |
self.metrics.setdefault(f'{metric_name}/train', []).append(metric) | |
self.log(f'{metric_name}/train', metric, prog_bar=True) | |
return training_metrics | |
def validation_step(self, data, *args): | |
delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0 = self.forward(data, training=False) | |
vlb_loss = kl_prior + loss_term_t + loss_term_0 - delta_log_px | |
if self.loss_type == 'l2': | |
loss = l2_loss | |
elif self.loss_type == 'vlb': | |
loss = vlb_loss | |
else: | |
raise NotImplementedError(self.loss_type) | |
return { | |
'loss': loss, | |
'delta_log_px': delta_log_px, | |
'kl_prior': kl_prior, | |
'loss_term_t': loss_term_t, | |
'loss_term_0': loss_term_0, | |
'l2_loss': l2_loss, | |
'vlb_loss': vlb_loss, | |
'noise_t': noise_t, | |
'noise_0': noise_0 | |
} | |
def test_step(self, data, *args): | |
delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0 = self.forward(data, training=False) | |
vlb_loss = kl_prior + loss_term_t + loss_term_0 - delta_log_px | |
if self.loss_type == 'l2': | |
loss = l2_loss | |
elif self.loss_type == 'vlb': | |
loss = vlb_loss | |
else: | |
raise NotImplementedError(self.loss_type) | |
return { | |
'loss': loss, | |
'delta_log_px': delta_log_px, | |
'kl_prior': kl_prior, | |
'loss_term_t': loss_term_t, | |
'loss_term_0': loss_term_0, | |
'l2_loss': l2_loss, | |
'vlb_loss': vlb_loss, | |
'noise_t': noise_t, | |
'noise_0': noise_0 | |
} | |
def training_epoch_end(self, training_step_outputs): | |
for metric in training_step_outputs[0].keys(): | |
avg_metric = self.aggregate_metric(training_step_outputs, metric) | |
self.metrics.setdefault(f'{metric}/train', []).append(avg_metric) | |
self.log(f'{metric}/train', avg_metric, prog_bar=True) | |
def validation_epoch_end(self, validation_step_outputs): | |
for metric in validation_step_outputs[0].keys(): | |
avg_metric = self.aggregate_metric(validation_step_outputs, metric) | |
self.metrics.setdefault(f'{metric}/val', []).append(avg_metric) | |
self.log(f'{metric}/val', avg_metric, prog_bar=True) | |
if (self.current_epoch + 1) % self.test_epochs == 0: | |
sampling_results = self.sample_and_analyze(self.val_dataloader()) | |
for metric_name, metric_value in sampling_results.items(): | |
self.log(f'{metric_name}/val', metric_value, prog_bar=True) | |
self.metrics.setdefault(f'{metric_name}/val', []).append(metric_value) | |
# Logging the results corresponding to the best validation_and_connectivity | |
best_metrics, best_epoch = self.compute_best_validation_metrics() | |
self.log('best_epoch', int(best_epoch), prog_bar=True, batch_size=self.batch_size) | |
for metric, value in best_metrics.items(): | |
self.log(f'best_{metric}', value, prog_bar=True, batch_size=self.batch_size) | |
def test_epoch_end(self, test_step_outputs): | |
for metric in test_step_outputs[0].keys(): | |
avg_metric = self.aggregate_metric(test_step_outputs, metric) | |
self.metrics.setdefault(f'{metric}/test', []).append(avg_metric) | |
self.log(f'{metric}/test', avg_metric, prog_bar=True) | |
if (self.current_epoch + 1) % self.test_epochs == 0: | |
sampling_results = self.sample_and_analyze(self.test_dataloader()) | |
for metric_name, metric_value in sampling_results.items(): | |
self.log(f'{metric_name}/test', metric_value, prog_bar=True) | |
self.metrics.setdefault(f'{metric_name}/test', []).append(metric_value) | |
def generate_animation(self, chain_batch, node_mask, batch_i): | |
batch_indices, mol_indices = utils.get_batch_idx_for_animation(self.batch_size, batch_i) | |
for bi, mi in zip(batch_indices, mol_indices): | |
chain = chain_batch[:, bi, :, :] | |
name = f'mol_{mi}' | |
chain_output = os.path.join(self.samples_dir, f'epoch_{self.current_epoch}', name) | |
os.makedirs(chain_output, exist_ok=True) | |
one_hot = chain[:, :, 3:-1] if self.include_charges else chain[:, :, 3:] | |
positions = chain[:, :, :3] | |
chain_node_mask = torch.cat([node_mask[bi].unsqueeze(0) for _ in range(self.FRAMES)], dim=0) | |
names = [f'{name}_{j}' for j in range(self.FRAMES)] | |
save_xyz_file(chain_output, one_hot, positions, chain_node_mask, names=names, is_geom=self.is_geom) | |
visualize_chain(chain_output, wandb=wandb, mode=name, is_geom=self.is_geom) | |
def sample_and_analyze(self, dataloader): | |
pred_molecules = [] | |
true_molecules = [] | |
true_fragments = [] | |
for b, data in tqdm(enumerate(dataloader), total=len(dataloader), desc='Sampling'): | |
atom_mask = data['atom_mask'] | |
fragment_mask = data['fragment_mask'] | |
# Save molecules without pockets | |
if '.' in self.train_data_prefix: | |
atom_mask = data['atom_mask'] - data['pocket_mask'] | |
fragment_mask = data['fragment_only_mask'] | |
true_molecules_batch = build_molecules( | |
data['one_hot'], | |
data['positions'], | |
atom_mask, | |
is_geom=self.is_geom, | |
) | |
true_fragments_batch = build_molecules( | |
data['one_hot'], | |
data['positions'], | |
fragment_mask, | |
is_geom=self.is_geom, | |
) | |
for sample_idx in tqdm(range(self.n_stability_samples)): | |
try: | |
chain_batch, node_mask = self.sample_chain(data, keep_frames=self.FRAMES) | |
except utils.FoundNaNException as e: | |
for idx in e.x_h_nan_idx: | |
smiles = data['name'][idx] | |
print(f'FoundNaNException: [xh], e={self.current_epoch}, b={b}, i={idx}: {smiles}') | |
for idx in e.only_x_nan_idx: | |
smiles = data['name'][idx] | |
print(f'FoundNaNException: [x ], e={self.current_epoch}, b={b}, i={idx}: {smiles}') | |
for idx in e.only_h_nan_idx: | |
smiles = data['name'][idx] | |
print(f'FoundNaNException: [ h], e={self.current_epoch}, b={b}, i={idx}: {smiles}') | |
continue | |
# Get final molecules from chains β for computing metrics | |
x, h = utils.split_features( | |
z=chain_batch[0], | |
n_dims=self.n_dims, | |
num_classes=self.num_classes, | |
include_charges=self.include_charges, | |
) | |
# Save molecules without pockets | |
if '.' in self.train_data_prefix: | |
node_mask = node_mask - data['pocket_mask'] | |
one_hot = h['categorical'] | |
pred_molecules_batch = build_molecules(one_hot, x, node_mask, is_geom=self.is_geom) | |
# Adding only results for valid ground truth molecules | |
for pred_mol, true_mol, frag in zip(pred_molecules_batch, true_molecules_batch, true_fragments_batch): | |
if metrics.is_valid(true_mol): | |
pred_molecules.append(pred_mol) | |
true_molecules.append(true_mol) | |
true_fragments.append(frag) | |
# Generate animation β will always do it for molecules with idx 0, 110 and 360 | |
if self.samples_dir is not None and sample_idx == 0: | |
self.generate_animation(chain_batch=chain_batch, node_mask=node_mask, batch_i=b) | |
# Our own & DeLinker metrics | |
our_metrics = metrics.compute_metrics( | |
pred_molecules=pred_molecules, | |
true_molecules=true_molecules | |
) | |
delinker_metrics = delinker.get_delinker_metrics( | |
pred_molecules=pred_molecules, | |
true_molecules=true_molecules, | |
true_fragments=true_fragments | |
) | |
return { | |
**our_metrics, | |
**delinker_metrics | |
} | |
def sample_chain(self, data, sample_fn=None, keep_frames=None): | |
if sample_fn is None: | |
linker_sizes = data['linker_mask'].sum(1).view(-1).int() | |
else: | |
linker_sizes = sample_fn(data) | |
if self.inpainting: | |
template_data = data | |
else: | |
template_data = create_templates_for_linker_generation(data, linker_sizes) | |
x = template_data['positions'] | |
node_mask = template_data['atom_mask'] | |
edge_mask = template_data['edge_mask'] | |
h = template_data['one_hot'] | |
anchors = template_data['anchors'] | |
fragment_mask = template_data['fragment_mask'] | |
linker_mask = template_data['linker_mask'] | |
# Anchors and fragments labels are used as context | |
if self.anchors_context: | |
context = torch.cat([anchors, fragment_mask], dim=-1) | |
else: | |
context = fragment_mask | |
# Add information about pocket to the context | |
if '.' in self.train_data_prefix: | |
fragment_pocket_mask = fragment_mask | |
fragment_only_mask = data['fragment_only_mask'] | |
pocket_only_mask = fragment_pocket_mask - fragment_only_mask | |
if self.anchors_context: | |
context = torch.cat([anchors, fragment_only_mask, pocket_only_mask], dim=-1) | |
else: | |
context = torch.cat([fragment_only_mask, pocket_only_mask], dim=-1) | |
# Removing COM of fragment from the atom coordinates | |
if self.inpainting: | |
center_of_mass_mask = node_mask | |
elif self.center_of_mass == 'fragments': | |
center_of_mass_mask = fragment_mask | |
elif self.center_of_mass == 'anchors': | |
center_of_mass_mask = anchors | |
else: | |
raise NotImplementedError(self.center_of_mass) | |
x = utils.remove_partial_mean_with_mask(x, node_mask, center_of_mass_mask) | |
chain = self.edm.sample_chain( | |
x=x, | |
h=h, | |
node_mask=node_mask, | |
edge_mask=edge_mask, | |
fragment_mask=fragment_mask, | |
linker_mask=linker_mask, | |
context=context, | |
keep_frames=keep_frames, | |
) | |
return chain, node_mask | |
def configure_optimizers(self): | |
return torch.optim.AdamW(self.edm.parameters(), lr=self.lr, amsgrad=True, weight_decay=1e-12) | |
def compute_best_validation_metrics(self): | |
loss = self.metrics[f'validity_and_connectivity/val'] | |
best_epoch = np.argmax(loss) | |
best_metrics = { | |
metric_name: metric_values[best_epoch] | |
for metric_name, metric_values in self.metrics.items() | |
if metric_name.endswith('/val') | |
} | |
return best_metrics, best_epoch | |
def aggregate_metric(step_outputs, metric): | |
return torch.tensor([out[metric] for out in step_outputs]).mean() | |