another_test / app.py
igardner's picture
Sure
63a75af
import gradio as gr
import json
import requests
import random
import time
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any, Tuple
import threading
from dataclasses import dataclass, field
import hashlib
import sqlite3
import base64
from io import BytesIO
import os
# Hugging Face Imports
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from diffusers import StableDiffusionPipeline
import torch
from huggingface_hub import InferenceApi
# Model configurations
TEXT_GENERATION_MODELS = {
"Qwen2.5-3B-Instruct": {
"model_id": "Qwen/Qwen2.5-3B-Instruct",
"description": "Efficient instruction-following model",
"max_tokens": 512,
"temperature": 0.7
},
"Mistral-7B-Instruct": {
"model_id": "mistralai/Mistral-7B-Instruct-v0.2",
"description": "Popular conversational model",
"max_tokens": 1024,
"temperature": 0.8
},
"Llama-3.2-1B-Instruct": {
"model_id": "meta-llama/Llama-3.2-1B-Instruct",
"description": "Meta's small efficient model",
"max_tokens": 512,
"temperature": 0.6
},
"GPT2": {
"model_id": "openai-community/gpt2",
"description": "Classic text generation",
"max_tokens": 256,
"temperature": 0.9
}
}
IMAGE_GENERATION_MODELS = {
"FLUX.1-dev": {
"model_id": "black-forest-labs/FLUX.1-dev",
"description": "High quality image generation"
},
"Stable-Diffusion-XL": {
"model_id": "stabilityai/stable-diffusion-xl-base-1.0",
"description": "Reliable stable diffusion"
},
"Z-Image-Turbo": {
"model_id": "Tongyi-MAI/Z-Image-Turbo",
"description": "Fast image generation"
}
}
# Database Setup
class DatabaseManager:
def __init__(self, db_path="cult_simulator.db"):
self.db_path = db_path
self.init_database()
def init_database(self):
"""Initialize SQLite database"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Create tables
cursor.execute('''
CREATE TABLE IF NOT EXISTS personalities (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
personality_type TEXT,
avatar_prompt TEXT,
avatar_image BLOB,
traits TEXT, -- JSON
background_story TEXT,
system_prompt TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS conversations (
id INTEGER PRIMARY KEY AUTOINCREMENT,
personality_id INTEGER,
message_content TEXT,
context TEXT, -- JSON
response_model TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (personality_id) REFERENCES personalities (id)
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS webhooks (
id INTEGER PRIMARY KEY AUTOINCREMENT,
personality_id INTEGER,
webhook_url TEXT,
discord_channel_id TEXT,
is_active BOOLEAN DEFAULT 1,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (personality_id) REFERENCES personalities (id)
)
''')
conn.commit()
conn.close()
def save_personality(self, name, personality_type, avatar_prompt, avatar_blob, traits, background_story, system_prompt):
"""Save personality to database"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('''
INSERT INTO personalities (name, personality_type, avatar_prompt, avatar_image, traits, background_story, system_prompt)
VALUES (?, ?, ?, ?, ?, ?, ?)
''', (name, personality_type, avatar_prompt, avatar_blob, json.dumps(traits), background_story, system_prompt))
personality_id = cursor.lastrowid
conn.commit()
conn.close()
return personality_id
def save_conversation(self, personality_id, message_content, context, response_model):
"""Save conversation to database"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('''
INSERT INTO conversations (personality_id, message_content, context, response_model)
VALUES (?, ?, ?, ?)
''', (personality_id, message_content, json.dumps(context), response_model))
conn.commit()
conn.close()
def get_personalities(self):
"""Get all personalities"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('SELECT * FROM personalities ORDER BY created_at DESC')
rows = cursor.fetchall()
conn.close()
return rows
def get_personalities_with_webhooks(self):
"""Get personalities with their webhooks"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('''
SELECT p.*, w.webhook_url, w.discord_channel_id, w.is_active
FROM personalities p
LEFT JOIN webhooks w ON p.id = w.personality_id
ORDER BY p.created_at DESC
''')
rows = cursor.fetchall()
conn.close()
return rows
class HuggingFaceModelManager:
"""Manage Hugging Face models for text and image generation"""
def __init__(self):
self.text_models = {}
self.image_models = {}
self.loaded_models = {}
def load_text_model(self, model_key):
"""Load a text generation model"""
if model_key not in self.loaded_models:
config = TEXT_GENERATION_MODELS[model_key]
try:
self.loaded_models[model_key] = pipeline(
"text-generation",
model=config["model_id"],
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
print(f"βœ… Loaded {model_key}")
except Exception as e:
print(f"❌ Error loading {model_key}: {e}")
return None
return self.loaded_models[model_key]
def generate_text(self, model_key, prompt, max_length=200):
"""Generate text using specified model"""
model = self.load_text_model(model_key)
if not model:
return f"Error: Could not load model {model_key}"
try:
config = TEXT_GENERATION_MODELS[model_key]
result = model(
prompt,
max_new_tokens=max_length,
temperature=config["temperature"],
do_sample=True,
pad_token_id=model.tokenizer.eos_token_id
)
generated_text = result[0]['generated_text']
# Remove the prompt from the response
if generated_text.startswith(prompt):
generated_text = generated_text[len(prompt):].strip()
return generated_text
except Exception as e:
return f"Error generating text: {e}"
def generate_avatar(self, model_key, personality_description):
"""Generate avatar using image model"""
config = IMAGE_GENERATION_MODELS[model_key]
# Create prompt for avatar
avatar_prompt = f"""
Portrait of {personality_description}, professional headshot,
realistic style, soft lighting, detailed facial features,
professional attire, clean background, high quality
"""
try:
# Use Hugging Face Inference API for image generation
# (Simpler than loading local models)
inference = InferenceApi(repo_id=config["model_id"], token=os.getenv("HF_TOKEN"))
# For demonstration, we'll return a placeholder URL
# In production, you'd call the actual inference
avatar_url = f"https://image.pollinations.ai/prompt/{avatar_prompt.replace(' ', '%20')}"
return avatar_url
except Exception as e:
return f"https://api.dicebear.com/7.x/avataaars/svg?seed={hash(personality_description)}"
class PersonalityGenerator:
"""Generate AI personalities using language models"""
def __init__(self, model_manager):
self.model_manager = model_manager
def generate_personality_traits(self, model_key, context=""):
"""Generate personality traits using AI"""
prompt = f"""
Generate a detailed personality profile for a fictional character.
Include specific personality traits, communication style, background story.
{context}
Format as JSON:
{{
"name": "Character name",
"traits": {{
"welcoming": 0.8,
"empathetic": 0.7,
"cautious": 0.3,
"enthusiastic": 0.6,
"mysterious": 0.4
}},
"background_story": "Brief background",
"communication_style": "How they talk",
"description": "Physical appearance description"
}}
"""
response = self.model_manager.generate_text(model_key, prompt, max_length=300)
try:
# Extract JSON from response
import re
json_match = re.search(r'\\{.*\\}', response, re.DOTALL)
if json_match:
return json.loads(json_match.group())
except:
pass
# Fallback to basic personality
return {
"name": f"AI_Personality_{random.randint(1000, 9999)}",
"traits": {
"welcoming": random.uniform(0.5, 1.0),
"empathetic": random.uniform(0.3, 0.9),
"cautious": random.uniform(0.2, 0.8),
"enthusiastic": random.uniform(0.4, 1.0),
"mysterious": random.uniform(0.1, 0.7)
},
"background_story": "An AI-generated personality created for social simulation.",
"communication_style": "Friendly and engaging",
"description": "A unique AI-generated character"
}
def generate_system_prompt(self, personality_data, context=""):
"""Generate dynamic system prompt for AI personality"""
traits_desc = []
for trait, value in personality_data["traits"].items():
if value > 0.7:
traits_desc.append(f"very {trait}")
elif value > 0.4:
traits_desc.append(f"somewhat {trait}")
prompt = f"""
You are {personality_data["name"]}, a character in a social simulation.
Your personality: {', '.join(traits_desc)}.
Background: {personality_data["background_story"]}
Communication style: {personality_data["communication_style"]}
{context}
Respond naturally as this character would, maintaining your personality traits.
Be engaging but authentic to your character.
"""
return prompt.strip()
class CultSimulatorApp:
"""Main application class"""
def __init__(self):
self.db = DatabaseManager()
self.model_manager = HuggingFaceModelManager()
self.personality_generator = PersonalityGenerator(self.model_manager)
self.active_personalities = []
self.simulation_running = False
def create_personality(self, name, model_key, context=""):
"""Create a new AI personality"""
if not name:
name = f"AI_Character_{random.randint(1000, 9999)}"
# Generate personality traits
personality_data = self.personality_generator.generate_personality_traits(model_key, context)
personality_data["name"] = name
# Generate system prompt
system_prompt = self.personality_generator.generate_system_prompt(personality_data)
# Generate avatar
avatar_url = self.model_manager.generate_avatar("FLUX.1-dev", personality_data["description"])
# Save to database
personality_id = self.db.save_personality(
name=name,
personality_type=model_key,
avatar_prompt=personality_data["description"],
avatar_blob=avatar_url.encode(), # Store URL as bytes for demo
traits=personality_data["traits"],
background_story=personality_data["background_story"],
system_prompt=system_prompt
)
personality_data["id"] = personality_id
personality_data["avatar_url"] = avatar_url
personality_data["system_prompt"] = system_prompt
self.active_personalities.append(personality_data)
return personality_data
def generate_response(self, personality_id, message, model_key, context=""):
"""Generate response from AI personality"""
# Get personality data
personality = next((p for p in self.active_personalities if p.get("id") == personality_id), None)
if not personality:
return "Personality not found"
# Create full prompt
full_prompt = f"{personality['system_prompt']}\n\nUser message: {message}\n\nResponse as {personality['name']}:"
# Generate response
response = self.model_manager.generate_text(model_key, full_prompt, max_length=150)
# Save conversation
self.db.save_conversation(personality_id, message, {"context": context}, model_key)
return response
def send_webhook_message(self, webhook_url, content, username, avatar_url):
"""Send message via Discord webhook"""
try:
data = {
"content": content,
"username": username,
"avatar_url": avatar_url
}
response = requests.post(webhook_url, json=data, timeout=10)
return response.status_code == 204
except Exception as e:
print(f"Webhook error: {e}")
return False
def simulate_conversation(self, trigger_message="", model_key="Qwen2.5-3B-Instruct", participants=None):
"""Simulate conversation between AI personalities"""
if not participants:
participants = random.sample(self.active_personalities, min(3, len(self.active_personalities)))
if len(participants) < 2:
return ["Need at least 2 personalities for conversation"]
conversation_log = []
# Start conversation
starter = random.choice(participants)
starter_response = self.generate_response(starter["id"], trigger_message or "Start a conversation", model_key)
conversation_log.append(f"**{starter['name']}**: {starter_response}")
# Send webhook if available
if hasattr(starter, 'webhook_url'):
self.send_webhook_message(starter['webhook_url'], starter_response, starter['name'], starter['avatar_url'])
time.sleep(1)
# Other participants respond
for participant in participants:
if participant != starter and random.random() > 0.3:
context = f"Responding to: {starter_response}"
response = self.generate_response(participant["id"], "What do you think about that?", model_key, context)
conversation_log.append(f"**{participant['name']}**: {response}")
# Send webhook if available
if hasattr(participant, 'webhook_url'):
self.send_webhook_message(participant['webhook_url'], response, participant['name'], participant['avatar_url'])
time.sleep(random.uniform(0.5, 2))
return conversation_log
def get_personalities_display(self):
"""Get formatted display of all personalities"""
personalities = self.db.get_personalities()
if not personalities:
return "No personalities created yet"
display = "## AI Personalities Database\n\n"
for personality in personalities:
id, name, personality_type, avatar_prompt, _, traits_json, background, system_prompt, created_at = personality
try:
traits = json.loads(traits_json) if traits_json else {}
display += f"### {name}\n"
display += f"- **Type**: {personality_type}\n"
display += f"- **Created**: {created_at}\n"
display += f"- **Traits**: {', '.join([f'{k}: {v:.2f}' for k, v in traits.items()])}\n"
display += f"- **Background**: {background[:100]}...\n\n"
except Exception as e:
display += f"### {name}\nError loading personality data\n\n"
return display
# Initialize application
app = CultSimulatorApp()
def create_gradio_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="πŸ€– Hugging Face Cult Simulator", theme=gr.themes.Soft()) as interface:
gr.HTML("""
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px;">
<h1>πŸ€– Hugging Face Cult Simulator</h1>
<h2>AI-Powered Personality Generation & Social Simulation</h2>
<p>Generate unique AI personalities using state-of-the-art models and watch them interact</p>
</div>
""")
with gr.Tabs():
# Tab 1: Personality Generation
with gr.Tab("🧠 AI Personality Generation"):
gr.Markdown("### Generate AI Personalities Using Language Models")
with gr.Row():
name_input = gr.Textbox(label="Character Name (Optional)", placeholder="Leave blank for auto-generated")
model_selector = gr.Dropdown(
label="Text Generation Model",
choices=list(TEXT_GENERATION_MODELS.keys()),
value="Qwen2.5-3B-Instruct"
)
avatar_model_selector = gr.Dropdown(
label="Avatar Generation Model",
choices=list(IMAGE_GENERATION_MODELS.keys()),
value="FLUX.1-dev"
)
context_input = gr.Textbox(
label="Generation Context (Optional)",
placeholder="E.g., 'Create a friendly but mysterious character who welcomes newcomers'",
lines=2
)
generate_btn = gr.Button("🎭 Generate AI Personality", variant="primary")
personality_output = gr.JSON(label="Generated Personality")
avatar_output = gr.Image(label="Generated Avatar")
# Personality display
personality_display = gr.Markdown(app.get_personalities_display())
# Tab 2: Conversation Simulator
with gr.Tab("πŸ’¬ Conversation Simulator"):
gr.Markdown("### Simulate Conversations Between AI Personalities")
with gr.Row():
conversation_model = gr.Dropdown(
label="Response Generation Model",
choices=list(TEXT_GENERATION_MODELS.keys()),
value="Qwen2.5-3B-Instruct"
)
trigger_message = gr.Textbox(
label="Conversation Starter",
placeholder="What should they talk about?",
lines=2
)
with gr.Row():
simulate_btn = gr.Button("🎬 Start Conversation", variant="primary")
auto_simulate_btn = gr.Button("πŸ”„ Auto-Simulate", variant="secondary")
stop_btn = gr.Button("⏹️ Stop", variant="stop")
conversation_output = gr.Textbox(
label="Conversation Log",
lines=15,
interactive=False
)
# Tab 3: Webhook Integration
with gr.Tab("πŸ“‘ Webhook Integration"):
gr.Markdown("### Connect AI Personalities to Discord Webhooks")
with gr.Row():
personality_selector = gr.Dropdown(
label="Select Personality",
choices=[],
value=None
)
webhook_url = gr.Textbox(
label="Discord Webhook URL",
placeholder="https://discord.com/api/webhooks/...",
type="text"
)
channel_id = gr.Textbox(
label="Discord Channel ID",
placeholder="123456789012345678"
)
with gr.Row():
connect_btn = gr.Button("πŸ”— Connect Webhook", variant="primary")
test_btn = gr.Button("πŸ§ͺ Test Webhook", variant="secondary")
webhook_status = gr.Textbox(
label="Webhook Status",
lines=5,
interactive=False
)
# Tab 4: Database & Analytics
with gr.Tab("πŸ“Š Database & Analytics"):
gr.Markdown("### View Stored Data and Analytics")
with gr.Row():
refresh_btn = gr.Button("πŸ”„ Refresh Data", variant="secondary")
export_btn = gr.Button("πŸ“€ Export Database", variant="primary")
database_display = gr.Markdown(app.get_personalities_display())
analytics_display = gr.JSON(label="Analytics Data")
# Event handlers
def generate_personality_handler(name, model_key, avatar_model, context):
personality = app.create_personality(name, model_key, context)
return personality, personality["avatar_url"], app.get_personalities_display()
def simulate_conversation_handler(model_key, trigger):
if not app.active_personalities:
return "❌ No personalities available. Create some personalities first!"
conversation = app.simulate_conversation(trigger, model_key)
return "\n\n".join(conversation)
def update_personalities_list():
personalities = app.db.get_personalities()
choices = [(f"{p[1]} (ID: {p[0]})", p[0]) for p in personalities]
return gr.Dropdown(choices=choices, value=None)
def connect_webhook_handler(personality_id, webhook_url, channel_id):
if not personality_id or not webhook_url:
return "❌ Please select a personality and provide webhook URL"
# In real implementation, save webhook to database
personality = next((p for p in app.active_personalities if p.get("id") == personality_id), None)
if personality:
personality["webhook_url"] = webhook_url
personality["channel_id"] = channel_id
return f"βœ… Connected {personality['name']} to webhook"
return "❌ Personality not found"
def test_webhook_handler(personality_id, webhook_url):
personality = next((p for p in app.active_personalities if p.get("id") == personality_id), None)
if personality and webhook_url:
success = app.send_webhook_message(
webhook_url,
"πŸ§ͺ Testing webhook connection from Hugging Face Cult Simulator!",
personality["name"],
personality["avatar_url"]
)
return "βœ… Webhook test successful!" if success else "❌ Webhook test failed"
return "❌ Invalid personality or webhook URL"
def export_database_handler():
personalities = app.db.get_personalities()
export_data = {
"timestamp": datetime.now().isoformat(),
"total_personalities": len(personalities),
"personalities": []
}
for personality in personalities:
export_data["personalities"].append({
"id": personality[0],
"name": personality[1],
"type": personality[2],
"created_at": personality[8]
})
return export_data
# Connect event handlers
generate_btn.click(
generate_personality_handler,
inputs=[name_input, model_selector, avatar_model_selector, context_input],
outputs=[personality_output, avatar_output, personality_display]
)
simulate_btn.click(
simulate_conversation_handler,
inputs=[conversation_model, trigger_message],
outputs=[conversation_output]
)
connect_btn.click(
connect_webhook_handler,
inputs=[personality_selector, webhook_url, channel_id],
outputs=[webhook_status]
)
test_btn.click(
test_webhook_handler,
inputs=[personality_selector, webhook_url],
outputs=[webhook_status]
)
refresh_btn.click(
app.get_personalities_display,
outputs=[database_display]
)
export_btn.click(
export_database_handler,
outputs=[analytics_display]
)
# Update personality selector when personalities are created
generate_btn.click(
update_personalities_list,
outputs=[personality_selector]
)
return interface
# Launch the application
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)