|
|
|
|
|
|
|
|
|
@@ -19,7 +19,7 @@ class ModulationModule(Module): |
|
|
|
def forward(self, x, embedding, cut_flag): |
|
x = self.fc(x) |
|
- x = self.norm(x) |
|
+ x = self.norm(x) |
|
if cut_flag == 1: |
|
return x |
|
gamma = self.gamma_function(embedding.float()) |
|
@@ -39,20 +39,20 @@ class SubHairMapper(Module): |
|
def forward(self, x, embedding, cut_flag=0): |
|
x = self.pixelnorm(x) |
|
for modulation_module in self.modulation_module_list: |
|
- x = modulation_module(x, embedding, cut_flag) |
|
+ x = modulation_module(x, embedding, cut_flag) |
|
return x |
|
|
|
-class HairMapper(Module): |
|
+class HairMapper(Module): |
|
def __init__(self, opts): |
|
super(HairMapper, self).__init__() |
|
self.opts = opts |
|
- self.clip_model, self.preprocess = clip.load("ViT-B/32", device="cuda") |
|
+ self.clip_model, self.preprocess = clip.load("ViT-B/32", device=opts.device) |
|
self.transform = transforms.Compose([transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))]) |
|
self.face_pool = torch.nn.AdaptiveAvgPool2d((224, 224)) |
|
self.hairstyle_cut_flag = 0 |
|
self.color_cut_flag = 0 |
|
|
|
- if not opts.no_coarse_mapper: |
|
+ if not opts.no_coarse_mapper: |
|
self.course_mapping = SubHairMapper(opts, 4) |
|
if not opts.no_medium_mapper: |
|
self.medium_mapping = SubHairMapper(opts, 4) |
|
@@ -70,13 +70,13 @@ class HairMapper(Module): |
|
elif hairstyle_tensor.shape[1] != 1: |
|
hairstyle_embedding = self.gen_image_embedding(hairstyle_tensor, self.clip_model, self.preprocess).unsqueeze(1).repeat(1, 18, 1).detach() |
|
else: |
|
- hairstyle_embedding = torch.ones(x.shape[0], 18, 512).cuda() |
|
+ hairstyle_embedding = torch.ones(x.shape[0], 18, 512).to(self.opts.device) |
|
if color_text_inputs.shape[1] != 1: |
|
color_embedding = self.clip_model.encode_text(color_text_inputs).unsqueeze(1).repeat(1, 18, 1).detach() |
|
elif color_tensor.shape[1] != 1: |
|
color_embedding = self.gen_image_embedding(color_tensor, self.clip_model, self.preprocess).unsqueeze(1).repeat(1, 18, 1).detach() |
|
else: |
|
- color_embedding = torch.ones(x.shape[0], 18, 512).cuda() |
|
+ color_embedding = torch.ones(x.shape[0], 18, 512).to(self.opts.device) |
|
|
|
|
|
if (hairstyle_text_inputs.shape[1] == 1) and (hairstyle_tensor.shape[1] == 1): |
|
@@ -106,4 +106,4 @@ class HairMapper(Module): |
|
x_fine = torch.zeros_like(x_fine) |
|
|
|
out = torch.cat([x_coarse, x_medium, x_fine], dim=1) |
|
- return out |
|
\ No newline at end of file |
|
+ return out |
|
|