|
|
|
|
|
|
|
|
|
@@ -2,17 +2,18 @@ import os |
|
|
|
import torch |
|
from torch import nn |
|
+from torch.nn import functional as F |
|
from torch.autograd import Function |
|
from torch.utils.cpp_extension import load |
|
|
|
-module_path = os.path.dirname(__file__) |
|
-fused = load( |
|
- 'fused', |
|
- sources=[ |
|
- os.path.join(module_path, 'fused_bias_act.cpp'), |
|
- os.path.join(module_path, 'fused_bias_act_kernel.cu'), |
|
- ], |
|
-) |
|
+#module_path = os.path.dirname(__file__) |
|
+#fused = load( |
|
+# 'fused', |
|
+# sources=[ |
|
+# os.path.join(module_path, 'fused_bias_act.cpp'), |
|
+# os.path.join(module_path, 'fused_bias_act_kernel.cu'), |
|
+# ], |
|
+#) |
|
|
|
|
|
class FusedLeakyReLUFunctionBackward(Function): |
|
@@ -82,4 +83,18 @@ class FusedLeakyReLU(nn.Module): |
|
|
|
|
|
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): |
|
- return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) |
|
+ if input.device.type == "cpu": |
|
+ if bias is not None: |
|
+ rest_dim = [1] * (input.ndim - bias.ndim - 1) |
|
+ return ( |
|
+ F.leaky_relu( |
|
+ input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2 |
|
+ ) |
|
+ * scale |
|
+ ) |
|
+ |
|
+ else: |
|
+ return F.leaky_relu(input, negative_slope=0.2) * scale |
|
+ |
|
+ else: |
|
+ return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) |
|
|
|
|
|
|
|
|
|
@@ -1,17 +1,18 @@ |
|
import os |
|
|
|
import torch |
|
+from torch.nn import functional as F |
|
from torch.autograd import Function |
|
from torch.utils.cpp_extension import load |
|
|
|
-module_path = os.path.dirname(__file__) |
|
-upfirdn2d_op = load( |
|
- 'upfirdn2d', |
|
- sources=[ |
|
- os.path.join(module_path, 'upfirdn2d.cpp'), |
|
- os.path.join(module_path, 'upfirdn2d_kernel.cu'), |
|
- ], |
|
-) |
|
+#module_path = os.path.dirname(__file__) |
|
+#upfirdn2d_op = load( |
|
+# 'upfirdn2d', |
|
+# sources=[ |
|
+# os.path.join(module_path, 'upfirdn2d.cpp'), |
|
+# os.path.join(module_path, 'upfirdn2d_kernel.cu'), |
|
+# ], |
|
+#) |
|
|
|
|
|
class UpFirDn2dBackward(Function): |
|
@@ -97,8 +98,8 @@ class UpFirDn2d(Function): |
|
|
|
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) |
|
|
|
- out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 |
|
- out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 |
|
+ out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y |
|
+ out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x |
|
ctx.out_size = (out_h, out_w) |
|
|
|
ctx.up = (up_x, up_y) |
|
@@ -140,9 +141,13 @@ class UpFirDn2d(Function): |
|
|
|
|
|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): |
|
- out = UpFirDn2d.apply( |
|
- input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) |
|
- ) |
|
+ if input.device.type == "cpu": |
|
+ out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) |
|
+ |
|
+ else: |
|
+ out = UpFirDn2d.apply( |
|
+ input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) |
|
+ ) |
|
|
|
return out |
|
|
|
@@ -150,6 +155,9 @@ def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): |
|
def upfirdn2d_native( |
|
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 |
|
): |
|
+ _, channel, in_h, in_w = input.shape |
|
+ input = input.reshape(-1, in_h, in_w, 1) |
|
+ |
|
_, in_h, in_w, minor = input.shape |
|
kernel_h, kernel_w = kernel.shape |
|
|
|
@@ -180,5 +188,9 @@ def upfirdn2d_native( |
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, |
|
) |
|
out = out.permute(0, 2, 3, 1) |
|
+ out = out[:, ::down_y, ::down_x, :] |
|
+ |
|
+ out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y |
|
+ out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x |
|
|
|
- return out[:, ::down_y, ::down_x, :] |
|
+ return out.view(-1, channel, out_h, out_w) |
|
|