idea123 commited on
Commit
d0cb1cf
·
1 Parent(s): bf59646

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +148 -0
  2. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import nest_asyncio
3
+ import gradio as gr
4
+ import requests
5
+ from bs4 import BeautifulSoup
6
+ from huggingface_hub import InferenceClient
7
+ from langchain.chains import RAGChain, RunnablePassthrough, LLMChain
8
+ from langchain.retrievers import FaissRetriever
9
+ from langchain.prompts import PromptTemplate
10
+ from langchain.wrappers import HuggingFacePipeline
11
+ from langchain.indexing import AsyncChromiumLoader, Html2TextTransformer, CharacterTextSplitter, FAISS, HuggingFaceEmbeddings
12
+
13
+ # Apply nest_asyncio for asynchronous operations in environments like Jupyter notebooks
14
+ nest_asyncio.apply()
15
+
16
+ # Initialize the InferenceClient with the specified model
17
+ client = InferenceClient(
18
+ "mistralai/Mistral-7B-Instruct-v0.1"
19
+ )
20
+
21
+ # Set up a prompt template for the model (customize as needed)
22
+ prompt_template = PromptTemplate()
23
+
24
+ # Define the list of articles to index
25
+ articles = [
26
+ "https://www.fantasypros.com/2023/11/rival-fantasy-nfl-week-10/",
27
+ "https://www.fantasypros.com/2023/11/5-stats-to-know-before-setting-your-fantasy-lineup-week-10/",
28
+ "https://www.fantasypros.com/2023/11/nfl-week-10-sleeper-picks-player-predictions-2023/",
29
+ "https://www.fantasypros.com/2023/11/nfl-dfs-week-10-stacking-advice-picks-2023-fantasy-football/",
30
+ "https://www.fantasypros.com/2023/11/players-to-buy-low-sell-high-trade-advice-2023-fantasy-football/"
31
+ ]
32
+
33
+ # Scrapes the blogs above
34
+ loader = AsyncChromiumLoader(articles)
35
+ docs = loader.load()
36
+
37
+ # Converts HTML to plain text
38
+ html2text = Html2TextTransformer()
39
+ docs_transformed = html2text.transform_documents(docs)
40
+
41
+ # Chunk text
42
+ text_splitter = CharacterTextSplitter(chunk_size=100,
43
+ chunk_overlap=10)
44
+ chunked_documents = text_splitter.split_documents(docs_transformed)
45
+
46
+ # Load chunked documents into the FAISS index
47
+ db = FAISS.from_documents(chunked_documents,
48
+ HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2'))
49
+
50
+ retriever = db.as_retriever()
51
+
52
+ # Create the RAG chain by combining the language model with the retriever
53
+ rag_chain = ({"context": retriever, "question": RunnablePassthrough()} | LLMChain)
54
+
55
+ # Define the generation function for the Gradio interface
56
+ def generate(
57
+ prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
58
+ ):
59
+ temperature = float(temperature)
60
+ if temperature < 1e-2:
61
+ temperature = 1e-2
62
+ top_p = float(top_p)
63
+
64
+ generate_kwargs = dict(
65
+ temperature=temperature,
66
+ max_new_tokens=max_new_tokens,
67
+ top_p=top_p,
68
+ repetition_penalty=repetition_penalty,
69
+ do_sample=True,
70
+ seed=42,
71
+ )
72
+
73
+ formatted_prompt = "<s>"
74
+ for user_prompt, bot_response in history:
75
+ formatted_prompt += f"[INST] {user_prompt} [/INST]"
76
+ formatted_prompt += f" {bot_response}</s> "
77
+ formatted_prompt += f"[INST] {prompt} [/INST]"
78
+
79
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
80
+ output = ""
81
+
82
+ for response in stream:
83
+ output += response.token.text
84
+ yield output
85
+ return output
86
+
87
+ # Define additional input components for the Gradio interface
88
+ additional_inputs = [
89
+ gr.Slider(
90
+ label="Temperature",
91
+ value=0.7,
92
+ minimum=0.0,
93
+ maximum=1.0,
94
+ step=0.05,
95
+ interactive=True,
96
+ info="Higher values produce more diverse outputs",
97
+ ),
98
+ gr.Slider(
99
+ label="Max new tokens",
100
+ value=256,
101
+ minimum=0,
102
+ maximum=1024,
103
+ step=64,
104
+ interactive=True,
105
+ info="The maximum number of new tokens",
106
+ ),
107
+ gr.Slider(
108
+ label="Top-p (nucleus sampling)",
109
+ value=0.95,
110
+ minimum=0.0,
111
+ maximum=1,
112
+ step=0.05,
113
+ interactive=True,
114
+ info="Higher values sample more low-probability tokens",
115
+ ),
116
+ gr.Slider(
117
+ label="Repetition penalty",
118
+ value=1.1,
119
+ minimum=1.0,
120
+ maximum=2.0,
121
+ step=0.05,
122
+ interactive=True,
123
+ info="Penalize repeated tokens",
124
+ )
125
+ ]
126
+
127
+ # Define CSS for styling the Gradio interface
128
+ css = """
129
+ #mkd {
130
+ height: 500px;
131
+ overflow: auto;
132
+ border: 1px solid #ccc;
133
+ }
134
+ """
135
+
136
+ # Create the Gradio interface with the chat component
137
+ with gr.Blocks(css=css) as demo:
138
+ gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
139
+ gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. 📜<h3><center>")
140
+ gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. 📚<h3><center>")
141
+ gr.ChatInterface(
142
+ generate,
143
+ additional_inputs=additional_inputs,
144
+ examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]],
145
+ )
146
+
147
+ # Launch the Gradio interface with debugging enabled
148
+ demo.queue().launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ gradio==2.1.4
2
+ requests==2.26.0
3
+ beautifulsoup4==4.10.0
4
+ huggingface-hub==0.0.17
5
+ nest-asyncio==1.5.1
6
+ sentence-transformers==2.1.0
7
+ torch==1.9.0
8
+ transformers==4.11.3
9
+ langchain==0.6.2