Spaces:
Runtime error
Runtime error
| # Import necessary libraries | |
| import nest_asyncio | |
| import gradio as gr | |
| import requests | |
| from huggingface_hub import InferenceClient | |
| from langchain.chains import LLMChain | |
| from langchain.prompts import PromptTemplate | |
| from langchain.document_loaders import TextLoader | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.vectorstores import FAISS | |
| from langchain.document_loaders import AsyncChromiumLoader | |
| from langchain.document_loaders import TextLoader | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.vectorstores import FAISS | |
| from langchain.document_loaders import AsyncChromiumLoader | |
| # Apply nest_asyncio for asynchronous operations in environments like Jupyter notebooks | |
| nest_asyncio.apply() | |
| # Initialize the InferenceClient with the specified model | |
| client = InferenceClient( | |
| "mistralai/Mistral-7B-Instruct-v0.1" | |
| ) | |
| # Set up a prompt template for the model (customize as needed) | |
| prompt_template = PromptTemplate() | |
| # Define the list of articles to index | |
| articles = [ | |
| "https://www.fantasypros.com/2023/11/rival-fantasy-nfl-week-10/", | |
| "https://www.fantasypros.com/2023/11/5-stats-to-know-before-setting-your-fantasy-lineup-week-10/", | |
| "https://www.fantasypros.com/2023/11/nfl-week-10-sleeper-picks-player-predictions-2023/", | |
| "https://www.fantasypros.com/2023/11/nfl-dfs-week-10-stacking-advice-picks-2023-fantasy-football/", | |
| "https://www.fantasypros.com/2023/11/players-to-buy-low-sell-high-trade-advice-2023-fantasy-football/" | |
| ] | |
| # Scrapes the blogs above | |
| loader = AsyncChromiumLoader(articles) | |
| docs = loader.load() | |
| # Converts HTML to plain text | |
| html2text = Html2TextTransformer() | |
| docs_transformed = html2text.transform_documents(docs) | |
| # Chunk text | |
| text_splitter = CharacterTextSplitter(chunk_size=100, | |
| chunk_overlap=10) | |
| chunked_documents = text_splitter.split_documents(docs_transformed) | |
| # Load chunked documents into the FAISS index | |
| db = FAISS.from_documents(chunked_documents, | |
| HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')) | |
| retriever = db.as_retriever() | |
| # Create the RAG chain by combining the language model with the retriever | |
| rag_chain = ({"context": retriever} | LLMChain) | |
| # Define the generation function for the Gradio interface | |
| def generate( | |
| prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1, | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| formatted_prompt = "<s>" | |
| for user_prompt, bot_response in history: | |
| formatted_prompt += f"[INST] {user_prompt} [/INST]" | |
| formatted_prompt += f" {bot_response}</s> " | |
| formatted_prompt += f"[INST] {prompt} [/INST]" | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| yield output | |
| return output | |
| # Define additional input components for the Gradio interface | |
| additional_inputs = [ | |
| gr.Slider( | |
| label="Temperature", | |
| value=0.7, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=256, | |
| minimum=0, | |
| maximum=1024, | |
| step=64, | |
| interactive=True, | |
| info="The maximum number of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.95, | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.1, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ) | |
| ] | |
| # Define CSS for styling the Gradio interface | |
| css = """ | |
| #mkd { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| # Create the Gradio interface with the chat component | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>") | |
| gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. 📜<h3><center>") | |
| gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. 📚<h3><center>") | |
| gr.ChatInterface( | |
| generate, | |
| additional_inputs=additional_inputs, | |
| examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]], | |
| ) | |
| # Launch the Gradio interface with debugging enabled | |
| demo.queue().launch(debug=True) | |