idea123 commited on
Commit
9f8b92b
1 Parent(s): daa9d27

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +164 -0
app.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps#build-a-simple-chatbot-gui-with-streaming
2
+ import os
3
+
4
+ import base64
5
+ import gc
6
+ import random
7
+ import tempfile
8
+ import time
9
+ import uuid
10
+
11
+ from IPython.display import Markdown, display
12
+
13
+ from llama_index.core import Settings
14
+ from llama_index.llms.ollama import Ollama
15
+ from llama_index.core import PromptTemplate
16
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
17
+ from llama_index.core import VectorStoreIndex, ServiceContext, SimpleDirectoryReader
18
+
19
+ import streamlit as st
20
+
21
+
22
+ if "id" not in st.session_state:
23
+ st.session_state.id = uuid.uuid4()
24
+ st.session_state.file_cache = {}
25
+
26
+ session_id = st.session_state.id
27
+ client = None
28
+
29
+ def reset_chat():
30
+ st.session_state.messages = []
31
+ st.session_state.context = None
32
+ gc.collect()
33
+
34
+
35
+ def display_pdf(file):
36
+ # Opening file from file path
37
+
38
+ st.markdown("### PDF Preview")
39
+ base64_pdf = base64.b64encode(file.read()).decode("utf-8")
40
+
41
+ # Embedding PDF in HTML
42
+ pdf_display = f"""<iframe src="data:application/pdf;base64,{base64_pdf}" width="400" height="100%" type="application/pdf"
43
+ style="height:100vh; width:100%"
44
+ >
45
+ </iframe>"""
46
+
47
+ # Displaying File
48
+ st.markdown(pdf_display, unsafe_allow_html=True)
49
+
50
+
51
+ with st.sidebar:
52
+ st.header(f"Add your documents!")
53
+
54
+ uploaded_file = st.file_uploader("Choose your `.pdf` file", type="pdf")
55
+
56
+ if uploaded_file:
57
+ try:
58
+ with tempfile.TemporaryDirectory() as temp_dir:
59
+ file_path = os.path.join(temp_dir, uploaded_file.name)
60
+
61
+ with open(file_path, "wb") as f:
62
+ f.write(uploaded_file.getvalue())
63
+
64
+ file_key = f"{session_id}-{uploaded_file.name}"
65
+ st.write("Indexing your document...")
66
+
67
+ if file_key not in st.session_state.get('file_cache', {}):
68
+
69
+ if os.path.exists(temp_dir):
70
+ loader = SimpleDirectoryReader(
71
+ input_dir = temp_dir,
72
+ required_exts=[".pdf"],
73
+ recursive=True
74
+ )
75
+ else:
76
+ st.error('Could not find the file you uploaded, please check again...')
77
+ st.stop()
78
+
79
+ docs = loader.load_data()
80
+
81
+ # setup llm & embedding model
82
+ llm=Ollama(model="llama3", request_timeout=120.0)
83
+ embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True)
84
+ # Creating an index over loaded data
85
+ Settings.embed_model = embed_model
86
+ index = VectorStoreIndex.from_documents(docs, show_progress=True)
87
+
88
+ # Create the query engine, where we use a cohere reranker on the fetched nodes
89
+ Settings.llm = llm
90
+ query_engine = index.as_query_engine(streaming=True)
91
+
92
+ # ====== Customise prompt template ======
93
+ qa_prompt_tmpl_str = (
94
+ "Context information is below.\n"
95
+ "---------------------\n"
96
+ "{context_str}\n"
97
+ "---------------------\n"
98
+ "Given the context information above I want you to think step by step to answer the query in a crisp manner, incase case you don't know the answer say 'I don't know!'.\n"
99
+ "Query: {query_str}\n"
100
+ "Answer: "
101
+ )
102
+ qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str)
103
+
104
+ query_engine.update_prompts(
105
+ {"response_synthesizer:text_qa_template": qa_prompt_tmpl}
106
+ )
107
+
108
+ st.session_state.file_cache[file_key] = query_engine
109
+ else:
110
+ query_engine = st.session_state.file_cache[file_key]
111
+
112
+ # Inform the user that the file is processed and Display the PDF uploaded
113
+ st.success("Ready to Chat!")
114
+ display_pdf(uploaded_file)
115
+ except Exception as e:
116
+ st.error(f"An error occurred: {e}")
117
+ st.stop()
118
+
119
+ col1, col2 = st.columns([6, 1])
120
+
121
+ with col1:
122
+ st.header(f"Chat with Docs using Llama-3")
123
+
124
+ with col2:
125
+ st.button("Clear ↺", on_click=reset_chat)
126
+
127
+ # Initialize chat history
128
+ if "messages" not in st.session_state:
129
+ reset_chat()
130
+
131
+
132
+ # Display chat messages from history on app rerun
133
+ for message in st.session_state.messages:
134
+ with st.chat_message(message["role"]):
135
+ st.markdown(message["content"])
136
+
137
+
138
+ # Accept user input
139
+ if prompt := st.chat_input("What's up?"):
140
+ # Add user message to chat history
141
+ st.session_state.messages.append({"role": "user", "content": prompt})
142
+ # Display user message in chat message container
143
+ with st.chat_message("user"):
144
+ st.markdown(prompt)
145
+
146
+ # Display assistant response in chat message container
147
+ with st.chat_message("assistant"):
148
+ message_placeholder = st.empty()
149
+ full_response = ""
150
+
151
+ # Simulate stream of response with milliseconds delay
152
+ streaming_response = query_engine.query(prompt)
153
+
154
+ for chunk in streaming_response.response_gen:
155
+ full_response += chunk
156
+ message_placeholder.markdown(full_response + "▌")
157
+
158
+ # full_response = query_engine.query(prompt)
159
+
160
+ message_placeholder.markdown(full_response)
161
+ # st.session_state.context = ctx
162
+
163
+ # Add assistant response to chat history
164
+ st.session_state.messages.append({"role": "assistant", "content": full_response})