ibvhim commited on
Commit
1f7c132
·
1 Parent(s): fc68c49

Create Pictionary/app.py

Browse files
Files changed (1) hide show
  1. Pictionary/app.py +47 -0
Pictionary/app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import gradio as gr
4
+ import torch
5
+ from huggingface_hub import hf_hub_download
6
+ from torch import nn
7
+
8
+ LABELS = Path(hf_hub_download('nateraw/quickdraw', 'class_names.txt')).read_text().splitlines()
9
+
10
+ model = nn.Sequential(
11
+ nn.Conv2d(1, 32, 3, padding='same'),
12
+ nn.ReLU(),
13
+ nn.MaxPool2d(2),
14
+ nn.Conv2d(32, 64, 3, padding='same'),
15
+ nn.ReLU(),
16
+ nn.MaxPool2d(2),
17
+ nn.Conv2d(64, 128, 3, padding='same'),
18
+ nn.ReLU(),
19
+ nn.MaxPool2d(2),
20
+ nn.Flatten(),
21
+ nn.Linear(1152, 256),
22
+ nn.ReLU(),
23
+ nn.Linear(256, len(LABELS)),
24
+ )
25
+ weights_file = hf_hub_download('nateraw/quickdraw', 'pytorch_model.bin')
26
+ state_dict = torch.load(weights_file, map_location='cpu')
27
+ model.load_state_dict(state_dict, strict=False)
28
+ model.eval()
29
+
30
+
31
+ def predict(im):
32
+ x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.0
33
+
34
+ with torch.no_grad():
35
+ out = model(x)
36
+
37
+ probabilities = torch.nn.functional.softmax(out[0], dim=0)
38
+
39
+ values, indices = torch.topk(probabilities, 5)
40
+
41
+ return {LABELS[i]: v.item() for i, v in zip(indices, values)}
42
+
43
+
44
+ interface = gr.Interface(predict, inputs='sketchpad', outputs='label', live=True)
45
+
46
+ if __name__ == '__main__':
47
+ interface.launch(debug=True)