TSAIGradcam / training_utils.py
ibrim's picture
Upload 8 files
71c714a verified
raw
history blame
3.95 kB
#!/usr/bin/env python3
"""
Utilities for Model Training
Author: Shilpaj Bhalerao
Date: Jun 21, 2023
"""
# Standard Library Imports
# Third-Party Imports
from tqdm import tqdm
import torch
def get_correct_predictions(prediction, labels):
"""
Function to return total number of correct predictions
:param prediction: Model predictions on a given sample of data
:param labels: Correct labels of a given sample of data
:return: Number of correct predictions
"""
return prediction.argmax(dim=1).eq(labels).sum().item()
def train(model, device, train_loader, optimizer, criterion, scheduler=None):
"""
Function to train model on the training dataset
:param model: Model architecture
:param device: Device on which training is to be done (GPU/CPU)
:param train_loader: DataLoader for training dataset
:param optimizer: Optimization algorithm to be used for updating weights
:param criterion: Loss function for training
:param scheduler: Scheduler for learning rate
"""
# Enable layers like Dropout for model training
model.train()
# Utility to display training progress
pbar = tqdm(train_loader)
# Variables to track loss and accuracy during training
train_loss = 0
correct = 0
processed = 0
# Iterate over each batch and fetch images and labels from the batch
for batch_idx, (data, target) in enumerate(pbar):
# Put the images and labels on the selected device
data, target = data.to(device), target.to(device)
# Reset the gradients for each batch
optimizer.zero_grad()
# Predict
pred = model(data)
# Calculate loss
loss = criterion(pred, target)
train_loss += loss.item()
# Backpropagation
loss.backward()
optimizer.step()
# Use learning rate scheduler if defined
if scheduler:
scheduler.step()
# Get total number of correct predictions
correct += get_correct_predictions(pred, target)
processed += len(data)
# Display the training information
pbar.set_description(
desc=f'Train: Loss={loss.item():0.4f} Batch_id={batch_idx} Accuracy={100 * correct / processed:0.2f}')
return correct, processed, train_loss
def test(model, device, test_loader, criterion):
"""
Function to test the model training progress on the test dataset
:param model: Model architecture
:param device: Device on which training is to be done (GPU/CPU)
:param test_loader: DataLoader for test dataset
:param criterion: Loss function for test dataset
"""
# Disable layers like Dropout for model inference
model.eval()
# Variables to track loss and accuracy
test_loss = 0
correct = 0
# Disable gradient updation
with torch.no_grad():
# Iterate over each batch and fetch images and labels from the batch
for batch_idx, (data, target) in enumerate(test_loader):
# Put the images and labels on the selected device
data, target = data.to(device), target.to(device)
# Pass the images to the output and get the model predictions
output = model(data)
test_loss += criterion(output, target).item() # sum up batch loss
# Sum up batch correct predictions
correct += get_correct_predictions(output, target)
# Calculate test loss for a epoch
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return correct, test_loss
def get_lr(optimizer):
"""
Function to track learning rate while model training
:param optimizer: Optimizer used for training
"""
for param_group in optimizer.param_groups:
return param_group['lr']