Spaces:
Sleeping
Sleeping
ibrahimnomad
commited on
Commit
•
8ec5b9a
1
Parent(s):
eb00392
Upload 3 files
Browse files- .gitattributes +1 -0
- app.py +43 -0
- fake_or_real_news.csv +3 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
fake_or_real_news.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.naive_bayes import MultinomialNB
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
# Set page title and icon
|
9 |
+
st.set_page_config(page_title='Fake News Detection', page_icon=":postal_horn:")
|
10 |
+
|
11 |
+
# Load the dataset
|
12 |
+
df = pd.read_csv("fake_or_real_news.csv")
|
13 |
+
|
14 |
+
# Train the model
|
15 |
+
x = np.array(df["title"])
|
16 |
+
y = np.array(df["label"])
|
17 |
+
cv = CountVectorizer()
|
18 |
+
x = cv.fit_transform(x)
|
19 |
+
|
20 |
+
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_state=42)
|
21 |
+
model = MultinomialNB()
|
22 |
+
model.fit(xtrain, ytrain)
|
23 |
+
|
24 |
+
|
25 |
+
st.title('Fake News Detection :postal_horn:')
|
26 |
+
|
27 |
+
# Display an image
|
28 |
+
st.image("https://upload.wikimedia.org/wikipedia/commons/f/f7/The_fin_de_siècle_newspaper_proprietor_%28cropped%29.jpg")
|
29 |
+
|
30 |
+
# Input field for user to enter news headline
|
31 |
+
default_example = "Alians decided to my America after Russia Exploded"
|
32 |
+
news_headline = st.text_input("Enter a news headline:", default_example)
|
33 |
+
|
34 |
+
if st.button("Check"):
|
35 |
+
# Make prediction
|
36 |
+
df_input = cv.transform([news_headline]).toarray()
|
37 |
+
prediction = model.predict(df_input)
|
38 |
+
|
39 |
+
# Display prediction result
|
40 |
+
if prediction[0] == 'FAKE':
|
41 |
+
st.error("This news headline is likely FAKE.")
|
42 |
+
else:
|
43 |
+
st.success("This news headline is likely REAL.")
|
fake_or_real_news.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb7fa746dd7148b63b0a10e47b329f4b4825afc85b206d3fea18ecfce28ee731
|
3 |
+
size 30696129
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
scikit-learn
|
4 |
+
streamlit
|