Spaces:
Sleeping
Sleeping
Commit
·
029c3bf
1
Parent(s):
462d56c
make streamlit app
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: red
|
| 6 |
sdk: streamlit
|
|
|
|
| 1 |
---
|
| 2 |
+
title: LLM From Scratch
|
| 3 |
+
emoji: 🧠
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: red
|
| 6 |
sdk: streamlit
|
app.py
CHANGED
|
@@ -1,4 +1,188 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torch.nn import functional as F
|
| 5 |
+
import pickle
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
+
st.title('LLM from scratch Demo')
|
| 9 |
+
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
block_size = 128
|
| 12 |
+
batch_size = 32
|
| 13 |
+
max_iters = 4000
|
| 14 |
+
learning_rate = 3e-4
|
| 15 |
+
eval_every = 500
|
| 16 |
+
n_embd = 384
|
| 17 |
+
n_head = 8
|
| 18 |
+
n_layer = 8
|
| 19 |
+
dropout = 0.2
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class Head(nn.Module):
|
| 23 |
+
""" one head of self-attention """
|
| 24 |
+
|
| 25 |
+
def __init__(self, head_size):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.key = nn.Linear(n_embd, head_size, bias=False)
|
| 28 |
+
self.query = nn.Linear(n_embd, head_size, bias=False)
|
| 29 |
+
self.value = nn.Linear(n_embd, head_size, bias=False)
|
| 30 |
+
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
| 31 |
+
|
| 32 |
+
self.dropout = nn.Dropout(dropout)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
# input of size (batch, time-step, channels)
|
| 36 |
+
# output of size (batch, time-step, head size)
|
| 37 |
+
B,T,C = x.shape
|
| 38 |
+
k = self.key(x) # (B,T,hs)
|
| 39 |
+
q = self.query(x) # (B,T,hs)
|
| 40 |
+
# compute attention scores ("affinities")
|
| 41 |
+
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
|
| 42 |
+
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
|
| 43 |
+
wei = F.softmax(wei, dim=-1) # (B, T, T)
|
| 44 |
+
wei = self.dropout(wei)
|
| 45 |
+
# perform the weighted aggregation of the values
|
| 46 |
+
v = self.value(x) # (B,T,hs)
|
| 47 |
+
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
|
| 48 |
+
return out
|
| 49 |
+
|
| 50 |
+
class MultiHeadAttention(nn.Module):
|
| 51 |
+
""" multiple heads of self-attention in parallel """
|
| 52 |
+
|
| 53 |
+
def __init__(self, num_heads, head_size):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
|
| 56 |
+
self.proj = nn.Linear(head_size * num_heads, n_embd)
|
| 57 |
+
self.dropout = nn.Dropout(dropout)
|
| 58 |
+
|
| 59 |
+
def forward(self, x):
|
| 60 |
+
out = torch.cat([h(x) for h in self.heads], dim=-1) # (B, T, F) -> (B, T, [h1, h1, h1, h1, h2, h2, h2, h2, h3, h3, h3, h3])
|
| 61 |
+
out = self.dropout(self.proj(out))
|
| 62 |
+
return out
|
| 63 |
+
|
| 64 |
+
class FeedFoward(nn.Module):
|
| 65 |
+
""" a simple linear layer followed by a non-linearity """
|
| 66 |
+
|
| 67 |
+
def __init__(self, n_embd):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.net = nn.Sequential(
|
| 70 |
+
nn.Linear(n_embd, 4 * n_embd),
|
| 71 |
+
nn.ReLU(),
|
| 72 |
+
nn.Linear(4 * n_embd, n_embd),
|
| 73 |
+
nn.Dropout(dropout),
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def forward(self, x):
|
| 77 |
+
return self.net(x)
|
| 78 |
+
|
| 79 |
+
class Block(nn.Module):
|
| 80 |
+
""" Transformer block: communication followed by computation """
|
| 81 |
+
|
| 82 |
+
def __init__(self, n_embd, n_head):
|
| 83 |
+
# n_embd: embedding dimension, n_head: the number of heads we'd like
|
| 84 |
+
super().__init__()
|
| 85 |
+
head_size = n_embd // n_head
|
| 86 |
+
self.sa = MultiHeadAttention(n_head, head_size)
|
| 87 |
+
self.ffwd = FeedFoward(n_embd)
|
| 88 |
+
self.ln1 = nn.LayerNorm(n_embd)
|
| 89 |
+
self.ln2 = nn.LayerNorm(n_embd)
|
| 90 |
+
|
| 91 |
+
def forward(self, x):
|
| 92 |
+
y = self.sa(x)
|
| 93 |
+
x = self.ln1(x + y)
|
| 94 |
+
y = self.ffwd(x)
|
| 95 |
+
x = self.ln2(x + y)
|
| 96 |
+
return x
|
| 97 |
+
|
| 98 |
+
class GPTLanguageModel(nn.Module):
|
| 99 |
+
def __init__(self, vocab_size):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
|
| 102 |
+
self.position_embedding_table = nn.Embedding(block_size, n_embd)
|
| 103 |
+
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
|
| 104 |
+
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
|
| 105 |
+
self.lm_head = nn.Linear(n_embd, vocab_size)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
self.apply(self._init_weights)
|
| 109 |
+
|
| 110 |
+
def _init_weights(self, module):
|
| 111 |
+
if isinstance(module, nn.Linear):
|
| 112 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 113 |
+
if module.bias is not None:
|
| 114 |
+
torch.nn.init.zeros_(module.bias)
|
| 115 |
+
elif isinstance(module, nn.Embedding):
|
| 116 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 117 |
+
|
| 118 |
+
def forward(self, index, targets=None):
|
| 119 |
+
B, T = index.shape
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# idx and targets are both (B,T) tensor of integers
|
| 123 |
+
tok_emb = self.token_embedding_table(index) # (B,T,C)
|
| 124 |
+
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
|
| 125 |
+
x = tok_emb + pos_emb # (B,T,C)
|
| 126 |
+
x = self.blocks(x) # (B,T,C)
|
| 127 |
+
x = self.ln_f(x) # (B,T,C)
|
| 128 |
+
logits = self.lm_head(x) # (B,T,vocab_size)
|
| 129 |
+
|
| 130 |
+
if targets is None:
|
| 131 |
+
loss = None
|
| 132 |
+
else:
|
| 133 |
+
B, T, C = logits.shape
|
| 134 |
+
logits = logits.view(B*T, C) # reshape to what torch.cross_entropy expects
|
| 135 |
+
targets = targets.view(B*T)
|
| 136 |
+
loss = F.cross_entropy(logits, targets)
|
| 137 |
+
return logits, loss
|
| 138 |
+
|
| 139 |
+
def generate(self, index, max_new_tokens):
|
| 140 |
+
# index is (B, T) array of indices in the current context
|
| 141 |
+
for _ in range(max_new_tokens):
|
| 142 |
+
# crop idx to the last block_size tokens
|
| 143 |
+
index_cond = index[:, -block_size:]
|
| 144 |
+
# get the predictions
|
| 145 |
+
logits, loss = self.forward(index_cond)
|
| 146 |
+
# focus only on the last time step
|
| 147 |
+
logits = logits[:, -1, :] # becomes (B, C)
|
| 148 |
+
# apply softmax to get probabilities
|
| 149 |
+
probs = F.softmax(logits, dim=-1) # (B, C)
|
| 150 |
+
# sample from the distribution
|
| 151 |
+
index_next = torch.multinomial(probs, num_samples=1) # (B, 1)
|
| 152 |
+
# append sampled index to the running sequence
|
| 153 |
+
index = torch.cat((index, index_next), dim=1) # (B, T+1)
|
| 154 |
+
return index
|
| 155 |
+
|
| 156 |
+
if not os.path.exists("./openwebtext/vocab.txt"):
|
| 157 |
+
raise Exception("Please run extract.py first")
|
| 158 |
+
chars = ""
|
| 159 |
+
with open("./openwebtext/vocab.txt", 'r', encoding='utf-8') as f:
|
| 160 |
+
text = f.read()
|
| 161 |
+
chars = sorted(list(set(text)))
|
| 162 |
+
|
| 163 |
+
string_to_int = {ch: i for i, ch in enumerate(chars)}
|
| 164 |
+
int_to_string = {i: ch for i, ch in enumerate(chars)}
|
| 165 |
+
|
| 166 |
+
encode = lambda s: [string_to_int[ch] for ch in s]
|
| 167 |
+
decode = lambda x: ''.join([int_to_string[i] for i in x])
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
model_pickle_path = './model.pkl'
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
st.write('loading model parameters...')
|
| 174 |
+
with open(model_pickle_path, 'rb') as f:
|
| 175 |
+
model = pickle.load(f)
|
| 176 |
+
st.write('model loaded successfully!')
|
| 177 |
+
except:
|
| 178 |
+
st.error('ERROR: model loading failed/model not found. Please run ./train_gpt_openwebtext.py first.')
|
| 179 |
+
exit()
|
| 180 |
+
|
| 181 |
+
prompt = ''
|
| 182 |
+
prompt = st.text_area('Prompt:', value=prompt, height=100, max_chars=block_size - 1, key='prompt')
|
| 183 |
+
if len(prompt) != 0:
|
| 184 |
+
context = torch.tensor(encode(prompt), dtype=torch.long, device=device)
|
| 185 |
+
max_new_tokens = block_size - len(prompt)
|
| 186 |
+
generated_chars = decode(model.generate(context.unsqueeze(0), max_new_tokens=max_new_tokens)[0].tolist())
|
| 187 |
+
st.write('Generated text:')
|
| 188 |
+
st.write(generated_chars)
|