Update app.py
Browse files
app.py
CHANGED
@@ -10,114 +10,122 @@ from datetime import datetime
|
|
10 |
|
11 |
def apply_color_transformation(image, transform_type):
|
12 |
"""Apply different color transformations to the image"""
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def process_image(image, transform_type):
|
31 |
"""Process uploaded image and extract cell features"""
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
# Store original image for color transformations
|
36 |
-
original_image = image.copy()
|
37 |
-
|
38 |
-
# Process image as before
|
39 |
-
if len(image.shape) == 3:
|
40 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
41 |
-
|
42 |
-
# Basic preprocessing
|
43 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
44 |
-
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
45 |
-
enhanced = clahe.apply(gray)
|
46 |
-
blurred = cv2.medianBlur(enhanced, 5)
|
47 |
-
|
48 |
-
# [Rest of the processing code remains the same until visualization]
|
49 |
-
|
50 |
-
# Create enhanced visualization with timestamp
|
51 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
52 |
-
vis_img = image.copy()
|
53 |
-
contours = measure.find_contours(markers, 0.5)
|
54 |
-
|
55 |
-
# Draw contours and cell IDs with improved visibility
|
56 |
-
for contour in contours:
|
57 |
-
coords = contour.astype(int)
|
58 |
-
cv2.drawContours(vis_img, [coords], -1, (0,255,0), 2) # Thicker lines
|
59 |
-
|
60 |
-
for region in measure.regionprops(markers):
|
61 |
-
if region.area >= 50:
|
62 |
-
y, x = region.centroid
|
63 |
-
# Add white background for better text visibility
|
64 |
-
cv2.putText(vis_img, str(region.label),
|
65 |
-
(int(x), int(y)),
|
66 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
67 |
-
0.5, (255,255,255), 2) # White outline
|
68 |
-
cv2.putText(vis_img, str(region.label),
|
69 |
-
(int(x), int(y)),
|
70 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
71 |
-
0.5, (0,0,255), 1) # Red text
|
72 |
-
|
73 |
-
# Add timestamp and cell count
|
74 |
-
cv2.putText(vis_img, f"Analyzed: {timestamp}",
|
75 |
-
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
|
76 |
-
0.7, (255,255,255), 2)
|
77 |
-
|
78 |
-
# Create summary plots with improved styling
|
79 |
-
plt.style.use('seaborn')
|
80 |
-
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
81 |
-
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
|
82 |
-
|
83 |
-
df = pd.DataFrame(features)
|
84 |
-
if not df.empty:
|
85 |
-
# Distribution plots
|
86 |
-
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
|
87 |
-
axes[0,0].set_title('Cell Size Distribution')
|
88 |
-
axes[0,0].set_xlabel('Area')
|
89 |
-
axes[0,0].set_ylabel('Count')
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
axes[0,1].set_xlabel('Circularity')
|
94 |
-
axes[0,1].set_ylabel('Count')
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
axes[1,0].set_title('Circularity vs Intensity')
|
100 |
-
axes[1,0].set_xlabel('Circularity')
|
101 |
-
axes[1,0].set_ylabel('Mean Intensity')
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
# Create enhanced Gradio interface
|
123 |
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
|
@@ -201,4 +209,7 @@ with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as d
|
|
201 |
|
202 |
# Launch the demo
|
203 |
if __name__ == "__main__":
|
204 |
-
|
|
|
|
|
|
|
|
10 |
|
11 |
def apply_color_transformation(image, transform_type):
|
12 |
"""Apply different color transformations to the image"""
|
13 |
+
try:
|
14 |
+
if len(image.shape) == 3:
|
15 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
16 |
+
|
17 |
+
if transform_type == "Original":
|
18 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
19 |
+
elif transform_type == "Grayscale":
|
20 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
21 |
+
elif transform_type == "Binary":
|
22 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
23 |
+
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
|
24 |
+
return binary
|
25 |
+
elif transform_type == "CLAHE":
|
26 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
27 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
28 |
+
return clahe.apply(gray)
|
29 |
+
return image
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error in apply_color_transformation: {e}")
|
32 |
+
return None
|
33 |
|
34 |
def process_image(image, transform_type):
|
35 |
"""Process uploaded image and extract cell features"""
|
36 |
+
try:
|
37 |
+
if image is None:
|
38 |
+
return None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Store original image for color transformations
|
41 |
+
original_image = image.copy()
|
|
|
|
|
42 |
|
43 |
+
# Process image as before
|
44 |
+
if len(image.shape) == 3:
|
45 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
46 |
|
47 |
+
# Basic preprocessing
|
48 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
49 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
50 |
+
enhanced = clahe.apply(gray)
|
51 |
+
blurred = cv2.medianBlur(enhanced, 5)
|
52 |
+
|
53 |
+
# [Rest of the processing code remains the same until visualization]
|
54 |
+
|
55 |
+
# Create enhanced visualization with timestamp
|
56 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
57 |
+
vis_img = image.copy()
|
58 |
+
contours = measure.find_contours(markers, 0.5)
|
59 |
+
|
60 |
+
# Draw contours and cell IDs with improved visibility
|
61 |
+
for contour in contours:
|
62 |
+
coords = contour.astype(int)
|
63 |
+
cv2.drawContours(vis_img, [coords], -1, (0,255,0), 2) # Thicker lines
|
64 |
+
|
65 |
+
for region in measure.regionprops(markers):
|
66 |
+
if region.area >= 50:
|
67 |
+
y, x = region.centroid
|
68 |
+
# Add white background for better text visibility
|
69 |
+
cv2.putText(vis_img, str(region.label),
|
70 |
+
(int(x), int(y)),
|
71 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
72 |
+
0.5, (255,255,255), 2) # White outline
|
73 |
+
cv2.putText(vis_img, str(region.label),
|
74 |
+
(int(x), int(y)),
|
75 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
76 |
+
0.5, (0,0,255), 1) # Red text
|
77 |
+
|
78 |
+
# Add timestamp and cell count
|
79 |
+
cv2.putText(vis_img, f"Analyzed: {timestamp}",
|
80 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
|
81 |
+
0.7, (255,255,255), 2)
|
82 |
+
|
83 |
+
# Create summary plots with improved styling
|
84 |
+
plt.style.use('seaborn')
|
85 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
86 |
+
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
|
87 |
+
|
88 |
+
df = pd.DataFrame(features)
|
89 |
+
if not df.empty:
|
90 |
+
# Distribution plots
|
91 |
+
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
|
92 |
+
axes[0,0].set_title('Cell Size Distribution')
|
93 |
+
axes[0,0].set_xlabel('Area')
|
94 |
+
axes[0,0].set_ylabel('Count')
|
95 |
+
|
96 |
+
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
|
97 |
+
axes[0,1].set_title('Circularity Distribution')
|
98 |
+
axes[0,1].set_xlabel('Circularity')
|
99 |
+
axes[0,1].set_ylabel('Count')
|
100 |
+
|
101 |
+
# Scatter plots
|
102 |
+
axes[1,0].scatter(df['circularity'], df['mean_intensity'],
|
103 |
+
alpha=0.6, c='purple')
|
104 |
+
axes[1,0].set_title('Circularity vs Intensity')
|
105 |
+
axes[1,0].set_xlabel('Circularity')
|
106 |
+
axes[1,0].set_ylabel('Mean Intensity')
|
107 |
+
|
108 |
+
# Add box plot
|
109 |
+
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
110 |
+
axes[1,1].set_title('Feature Distributions')
|
111 |
+
else:
|
112 |
+
for ax in axes.flat:
|
113 |
+
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
|
114 |
+
|
115 |
+
plt.tight_layout()
|
116 |
+
|
117 |
+
# Apply color transformation to original image
|
118 |
+
transformed_image = apply_color_transformation(original_image, transform_type)
|
119 |
+
|
120 |
+
return (
|
121 |
+
cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB),
|
122 |
+
transformed_image,
|
123 |
+
fig,
|
124 |
+
df
|
125 |
+
)
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error in process_image: {e}")
|
128 |
+
return None, None, None, None
|
129 |
|
130 |
# Create enhanced Gradio interface
|
131 |
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
|
|
|
209 |
|
210 |
# Launch the demo
|
211 |
if __name__ == "__main__":
|
212 |
+
try:
|
213 |
+
demo.launch()
|
214 |
+
except Exception as e:
|
215 |
+
print(f"Error launching Gradio interface: {e}")
|