Update app.py
Browse files
app.py
CHANGED
@@ -1,123 +1,45 @@
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
# Check if CUDA is available for GPU processing
|
14 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
-
|
16 |
-
# Load the SAM model
|
17 |
-
try:
|
18 |
-
sam = sam_model_registry[MODEL_TYPE](checkpoint=SAM_CHECKPOINT).to(DEVICE)
|
19 |
-
mask_generator = SamAutomaticMaskGenerator(sam)
|
20 |
-
except FileNotFoundError:
|
21 |
-
raise FileNotFoundError(f"Checkpoint file '{SAM_CHECKPOINT}' not found. Download it from: https://github.com/facebookresearch/segment-anything")
|
22 |
-
|
23 |
-
def preprocess_image(image):
|
24 |
-
"""Convert image to grayscale and apply adaptive thresholding for better cell detection."""
|
25 |
-
if len(image.shape) == 2:
|
26 |
-
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
27 |
-
|
28 |
-
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
29 |
-
|
30 |
-
# Apply adaptive thresholding for better contrast
|
31 |
-
adaptive_thresh = cv2.adaptiveThreshold(
|
32 |
-
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2
|
33 |
-
)
|
34 |
-
|
35 |
-
# Morphological operations to remove noise
|
36 |
-
kernel = np.ones((3, 3), np.uint8)
|
37 |
-
clean_mask = cv2.morphologyEx(adaptive_thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
38 |
-
clean_mask = cv2.morphologyEx(clean_mask, cv2.MORPH_OPEN, kernel, iterations=2)
|
39 |
-
|
40 |
-
return clean_mask
|
41 |
-
|
42 |
-
def detect_blood_cells(image):
|
43 |
-
"""Detect blood cells using SAM segmentation + contour analysis."""
|
44 |
-
# Generate masks using SAM
|
45 |
-
masks = mask_generator.generate(image)
|
46 |
-
|
47 |
-
features = []
|
48 |
-
processed_image = image.copy()
|
49 |
-
|
50 |
-
for i, mask in enumerate(masks):
|
51 |
-
mask_binary = mask["segmentation"].astype(np.uint8) * 255 # Convert to binary
|
52 |
-
contours, _ = cv2.findContours(mask_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
53 |
-
|
54 |
-
for contour in contours:
|
55 |
-
area = cv2.contourArea(contour)
|
56 |
-
perimeter = cv2.arcLength(contour, True)
|
57 |
-
circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
|
58 |
-
|
59 |
-
# Filter small or irregular shapes
|
60 |
-
if 100 < area < 5000 and circularity > 0.7:
|
61 |
-
M = cv2.moments(contour)
|
62 |
-
if M["m00"] != 0:
|
63 |
-
cx = int(M["m10"] / M["m00"])
|
64 |
-
cy = int(M["m01"] / M["m00"])
|
65 |
-
features.append(
|
66 |
-
{
|
67 |
-
"label": len(features) + 1,
|
68 |
-
"area": area,
|
69 |
-
"perimeter": perimeter,
|
70 |
-
"circularity": circularity,
|
71 |
-
"centroid_x": cx,
|
72 |
-
"centroid_y": cy,
|
73 |
-
}
|
74 |
-
)
|
75 |
-
|
76 |
-
# Draw detected cell on image
|
77 |
-
cv2.drawContours(processed_image, [contour], -1, (0, 255, 0), 2)
|
78 |
-
cv2.putText(
|
79 |
-
processed_image,
|
80 |
-
str(len(features)),
|
81 |
-
(cx, cy),
|
82 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
83 |
-
0.5,
|
84 |
-
(0, 0, 255),
|
85 |
-
1,
|
86 |
-
)
|
87 |
-
|
88 |
-
return processed_image, features
|
89 |
-
|
90 |
-
def process_image(image):
|
91 |
-
if image is None:
|
92 |
-
return None, None, None, None
|
93 |
-
|
94 |
-
processed_img, features = detect_blood_cells(image)
|
95 |
-
df = pd.DataFrame(features)
|
96 |
-
|
97 |
-
return processed_img, df
|
98 |
-
|
99 |
-
def analyze(image):
|
100 |
-
processed_img, df = process_image(image)
|
101 |
-
|
102 |
-
plt.style.use("dark_background")
|
103 |
-
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
|
104 |
-
|
105 |
-
if not df.empty:
|
106 |
-
axes[0].hist(df["area"], bins=20, color="cyan", edgecolor="black")
|
107 |
-
axes[0].set_title("Cell Size Distribution")
|
108 |
-
|
109 |
-
axes[1].scatter(df["area"], df["circularity"], alpha=0.6, c="magenta")
|
110 |
-
axes[1].set_title("Area vs Circularity")
|
111 |
-
|
112 |
-
return processed_img, fig, df
|
113 |
|
114 |
-
#
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
122 |
|
123 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
from collections import Counter
|
5 |
+
from ultralytics import YOLO
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
|
8 |
+
# Download model from Hugging Face repo
|
9 |
+
MODEL_PATH = hf_hub_download(
|
10 |
+
repo_id="ibrahim313/Bioengineering_Query_Tool_image_based",
|
11 |
+
filename="best.pt"
|
12 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Load the YOLOv10 model
|
15 |
+
model = YOLO(MODEL_PATH)
|
16 |
+
|
17 |
+
def predict(image):
|
18 |
+
# Convert the image from BGR to RGB
|
19 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
20 |
+
|
21 |
+
# Perform prediction
|
22 |
+
results = model.predict(source=image_rgb, imgsz=640, conf=0.25)
|
23 |
+
|
24 |
+
# Get the annotated image
|
25 |
+
annotated_img = results[0].plot()
|
26 |
+
|
27 |
+
# Extract detection data
|
28 |
+
detections = results[0].boxes.data if results[0].boxes is not None else []
|
29 |
+
class_names = [model.names[int(cls)] for cls in detections[:, 5]] if len(detections) > 0 else []
|
30 |
+
count = Counter(class_names)
|
31 |
+
|
32 |
+
# Create a string representation of the detections
|
33 |
+
detection_str = ', '.join([f"{name}: {count}" for name, count in count.items()]) if class_names else "No detections"
|
34 |
+
|
35 |
+
return annotated_img, detection_str
|
36 |
+
|
37 |
+
app = gr.Interface(
|
38 |
+
predict,
|
39 |
+
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
40 |
+
outputs=[gr.Image(type="numpy", label="Annotated Image"), gr.Textbox(label="Detection Counts")],
|
41 |
+
title="Blood Cell Count",
|
42 |
+
description="Upload an image and YOLOv10 will detect blood cells."
|
43 |
)
|
44 |
|
45 |
+
app.launch()
|