Spaces:
Runtime error
Runtime error
ibombonato
commited on
Commit
·
31a07fa
1
Parent(s):
11ea060
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import subprocess
|
4 |
+
import re
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib
|
9 |
+
import scipy.io
|
10 |
+
import scipy.io.wavfile
|
11 |
+
|
12 |
+
matplotlib.use('Agg')
|
13 |
+
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logging.getLogger()
|
16 |
+
|
17 |
+
def get_chunk_times(in_filename, silence_threshold, silence_duration=1):
|
18 |
+
|
19 |
+
silence_duration_re = re.compile('silence_duration: (\d+.\d+)')
|
20 |
+
silence_end_re = re.compile('silence_end: (\d+.\d+)\s')
|
21 |
+
|
22 |
+
command = f"ffmpeg -i {in_filename} -af silencedetect=n=-{silence_threshold}dB:d={silence_duration} -f null - "
|
23 |
+
out = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
24 |
+
|
25 |
+
stdout, stderr = out.communicate()
|
26 |
+
|
27 |
+
lines = stdout.splitlines()
|
28 |
+
|
29 |
+
ts = 0
|
30 |
+
chunks = []
|
31 |
+
for line in lines:
|
32 |
+
match = silence_duration_re.search(str(line))
|
33 |
+
if(match):
|
34 |
+
chunk_time = float(match.group(1))
|
35 |
+
ts = ts + chunk_time
|
36 |
+
end = silence_end_re.search(str(line))
|
37 |
+
if(end):
|
38 |
+
t_end = float(end.group(1))
|
39 |
+
t_start = t_end - chunk_time
|
40 |
+
chunks.append([t_start, t_end, chunks])
|
41 |
+
|
42 |
+
logging.info(f"TS audio {os.path.basename(in_filename)} = {ts}")
|
43 |
+
return ts, chunks
|
44 |
+
|
45 |
+
def get_plot(a):
|
46 |
+
x = [1, 2, 3]
|
47 |
+
y = np.array([[1, 2], [3, 4], [5, 6]])
|
48 |
+
plt.plot(x, y)
|
49 |
+
return plt.gcf()
|
50 |
+
|
51 |
+
def get_audio_plot(filename, chunks):
|
52 |
+
fig, ax = plt.subplots()
|
53 |
+
|
54 |
+
fig.set_size_inches(18.5, 10.5)
|
55 |
+
|
56 |
+
sampleRate, audioBuffer = scipy.io.wavfile.read(filename)
|
57 |
+
|
58 |
+
duration = len(audioBuffer)/sampleRate
|
59 |
+
|
60 |
+
time = np.arange(0,duration,1/sampleRate) #time vector
|
61 |
+
|
62 |
+
ax.plot(time,audioBuffer)
|
63 |
+
y1 = min(audioBuffer)
|
64 |
+
y2 = max(audioBuffer)
|
65 |
+
|
66 |
+
for c in chunks:
|
67 |
+
ax.fill_between(c[0:2], y1, y2,
|
68 |
+
color='gray', alpha=0.5)
|
69 |
+
|
70 |
+
plt.xlabel('Time [s]')
|
71 |
+
plt.ylabel('Amplitude')
|
72 |
+
plt.title(os.path.basename(filename))
|
73 |
+
|
74 |
+
#plt.show()
|
75 |
+
return plt.gcf()
|
76 |
+
|
77 |
+
def get_audio_info(audio):
|
78 |
+
ts, chunks = get_chunk_times(audio.name, 30, 1)
|
79 |
+
p = get_audio_plot(audio.name, chunks)
|
80 |
+
return str(ts), p
|
81 |
+
|
82 |
+
otext = gr.outputs.Textbox(type="auto", label="Silence time")
|
83 |
+
|
84 |
+
oplot = gr.outputs.Image(type="plot", label=None)
|
85 |
+
|
86 |
+
iaudio = gr.inputs.Audio(source="upload", type="file", label=None)
|
87 |
+
|
88 |
+
#iface = gr.Interface(audio, iaudio, [otext, oplot])
|
89 |
+
|
90 |
+
iface = gr.Interface(
|
91 |
+
get_audio_info,
|
92 |
+
iaudio,
|
93 |
+
[otext, oplot],
|
94 |
+
description="Enter .WAV audio to view silence areas",
|
95 |
+
)
|
96 |
+
|
97 |
+
iface.test_launch()
|
98 |
+
iface.launch()
|
99 |
+
|
100 |
+
# import matplotlib.pyplot as plt
|
101 |
+
# import numpy as np
|
102 |
+
# import pandas as pd
|
103 |
+
|
104 |
+
# import gradio as gr
|
105 |
+
# import matplotlib
|
106 |
+
|
107 |
+
# matplotlib.use('Agg')
|
108 |
+
|
109 |
+
|
110 |
+
# iaudio = gr.inputs.Audio(source="upload", type="file", label=None)
|
111 |
+
|
112 |
+
# def sales_projections(employee_data):
|
113 |
+
# sales_data = employee_data.iloc[:, 1:4].astype("int").to_numpy()
|
114 |
+
# regression_values = np.apply_along_axis(
|
115 |
+
# lambda row: np.array(np.poly1d(np.polyfit([0, 1, 2], row, 2))), 0, sales_data
|
116 |
+
# )
|
117 |
+
# projected_months = np.repeat(
|
118 |
+
# np.expand_dims(np.arange(3, 12), 0), len(sales_data), axis=0
|
119 |
+
# )
|
120 |
+
# projected_values = np.array(
|
121 |
+
# [
|
122 |
+
# month * month * regression[0] + month * regression[1] + regression[2]
|
123 |
+
# for month, regression in zip(projected_months, regression_values)
|
124 |
+
# ]
|
125 |
+
# )
|
126 |
+
# # x = [1, 2, 3]
|
127 |
+
# # y = np.array([[1, 2], [3, 4], [5, 6]])
|
128 |
+
# # plt.plot(x, y)
|
129 |
+
# #plt.plot(projected_values.T)
|
130 |
+
# #plt.legend(employee_data["Name"])
|
131 |
+
# return employee_data, get_plot(1), regression_values
|
132 |
+
|
133 |
+
|
134 |
+
# iface = gr.Interface(
|
135 |
+
# get_plot,
|
136 |
+
# iaudio,
|
137 |
+
# ["plot"],
|
138 |
+
# description="Enter sales figures for employees to predict sales trajectory over year.",
|
139 |
+
# )
|
140 |
+
# iface.launch()
|