Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
|
@@ -213,6 +213,7 @@ def generate_canonical(smiles):
|
|
| 213 |
latent_vec, mask = encode([selfie])
|
| 214 |
gen_mol = None
|
| 215 |
for i in range(5, 51):
|
|
|
|
| 216 |
noise = i / 10
|
| 217 |
perturbed_latent = perturb_latent(latent_vec, noise_scale=noise)
|
| 218 |
gen = generate(perturbed_latent, mask)
|
|
@@ -221,6 +222,7 @@ def generate_canonical(smiles):
|
|
| 221 |
|
| 222 |
if gen_mol:
|
| 223 |
# Calculate properties for ref and gen molecules
|
|
|
|
| 224 |
ref_properties = calculate_properties(smiles)
|
| 225 |
gen_properties = calculate_properties(gen_mol)
|
| 226 |
tanimoto_similarity = calculate_tanimoto(smiles, gen_mol)
|
|
@@ -235,6 +237,7 @@ def generate_canonical(smiles):
|
|
| 235 |
df = pd.DataFrame(data)
|
| 236 |
|
| 237 |
# Display molecule image of canonical smiles
|
|
|
|
| 238 |
mol_image = smiles_to_image(gen_mol)
|
| 239 |
|
| 240 |
return df, gen_mol, mol_image
|
|
|
|
| 213 |
latent_vec, mask = encode([selfie])
|
| 214 |
gen_mol = None
|
| 215 |
for i in range(5, 51):
|
| 216 |
+
print("Searching Latent space")
|
| 217 |
noise = i / 10
|
| 218 |
perturbed_latent = perturb_latent(latent_vec, noise_scale=noise)
|
| 219 |
gen = generate(perturbed_latent, mask)
|
|
|
|
| 222 |
|
| 223 |
if gen_mol:
|
| 224 |
# Calculate properties for ref and gen molecules
|
| 225 |
+
print("calculating properties")
|
| 226 |
ref_properties = calculate_properties(smiles)
|
| 227 |
gen_properties = calculate_properties(gen_mol)
|
| 228 |
tanimoto_similarity = calculate_tanimoto(smiles, gen_mol)
|
|
|
|
| 237 |
df = pd.DataFrame(data)
|
| 238 |
|
| 239 |
# Display molecule image of canonical smiles
|
| 240 |
+
print("Getting image")
|
| 241 |
mol_image = smiles_to_image(gen_mol)
|
| 242 |
|
| 243 |
return df, gen_mol, mol_image
|