blumenstiel
commited on
Commit
Β·
d668197
1
Parent(s):
5089ae8
Update app
Browse files- app.py +117 -316
- HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
- HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
- HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
- HLS.L30.T17RMP.2018004T155509.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T17RMP.2018004T155509.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
- HLS.L30.T17RMP.2018036T155452.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T17RMP.2018036T155452.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
- HLS.L30.T17RMP.2018068T155438.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T17RMP.2018068T155438.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
- HLS.L30.T18TVL.2018029T154533.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T18TVL.2018029T154533.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
- HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
- HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +0 -0
app.py
CHANGED
@@ -1,215 +1,28 @@
|
|
1 |
-
#### pull files from hub
|
2 |
-
from huggingface_hub import hf_hub_download
|
3 |
-
import os
|
4 |
-
yaml_file_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename="Prithvi_100M_config.yaml", token=os.environ.get("token"))
|
5 |
-
checkpoint=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename='Prithvi_100M.pt', token=os.environ.get("token"))
|
6 |
-
model_def=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename='Prithvi.py', token=os.environ.get("token"))
|
7 |
-
os.system(f'cp {model_def} .')
|
8 |
-
#####
|
9 |
-
import argparse
|
10 |
-
import functools
|
11 |
-
import os
|
12 |
-
from typing import List
|
13 |
|
14 |
-
import
|
15 |
-
import rasterio
|
16 |
import torch
|
17 |
import yaml
|
18 |
-
|
19 |
-
|
20 |
-
from Prithvi import MaskedAutoencoderViT
|
21 |
import gradio as gr
|
|
|
22 |
from functools import partial
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
PERCENTILES = (0.1, 99.9)
|
28 |
-
|
29 |
-
|
30 |
-
def process_channel_group(orig_img, new_img, channels, data_mean, data_std):
|
31 |
-
""" Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
|
32 |
-
original range using *data_mean* and *data_std* and then lowest and highest percentiles are
|
33 |
-
removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
|
34 |
-
Args:
|
35 |
-
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
|
36 |
-
new_img: torch.Tensor representing image with shape = (bands, H, W).
|
37 |
-
channels: list of indices representing RGB channels.
|
38 |
-
data_mean: list of mean values for each band.
|
39 |
-
data_std: list of std values for each band.
|
40 |
-
Returns:
|
41 |
-
torch.Tensor with shape (num_channels, height, width) for original image
|
42 |
-
torch.Tensor with shape (num_channels, height, width) for the other image
|
43 |
-
"""
|
44 |
-
|
45 |
-
stack_c = [], []
|
46 |
-
|
47 |
-
for c in channels:
|
48 |
-
orig_ch = orig_img[c, ...]
|
49 |
-
valid_mask = torch.ones_like(orig_ch, dtype=torch.bool)
|
50 |
-
valid_mask[orig_ch == NO_DATA_FLOAT] = False
|
51 |
-
|
52 |
-
# Back to original data range
|
53 |
-
orig_ch = (orig_ch * data_std[c]) + data_mean[c]
|
54 |
-
new_ch = (new_img[c, ...] * data_std[c]) + data_mean[c]
|
55 |
-
|
56 |
-
# Rescale (enhancing contrast)
|
57 |
-
min_value, max_value = np.percentile(orig_ch[valid_mask], PERCENTILES)
|
58 |
-
|
59 |
-
orig_ch = torch.clamp((orig_ch - min_value) / (max_value - min_value), 0, 1)
|
60 |
-
new_ch = torch.clamp((new_ch - min_value) / (max_value - min_value), 0, 1)
|
61 |
-
|
62 |
-
# No data as zeros
|
63 |
-
orig_ch[~valid_mask] = 0
|
64 |
-
new_ch[~valid_mask] = 0
|
65 |
-
|
66 |
-
stack_c[0].append(orig_ch)
|
67 |
-
stack_c[1].append(new_ch)
|
68 |
-
|
69 |
-
# Channels first
|
70 |
-
stack_orig = torch.stack(stack_c[0], dim=0)
|
71 |
-
stack_rec = torch.stack(stack_c[1], dim=0)
|
72 |
-
|
73 |
-
return stack_orig, stack_rec
|
74 |
-
|
75 |
-
|
76 |
-
def read_geotiff(file_path: str):
|
77 |
-
""" Read all bands from *file_path* and returns image + meta info.
|
78 |
-
Args:
|
79 |
-
file_path: path to image file.
|
80 |
-
Returns:
|
81 |
-
np.ndarray with shape (bands, height, width)
|
82 |
-
meta info dict
|
83 |
-
"""
|
84 |
-
|
85 |
-
with rasterio.open(file_path) as src:
|
86 |
-
img = src.read()
|
87 |
-
meta = src.meta
|
88 |
-
|
89 |
-
return img, meta
|
90 |
-
|
91 |
-
|
92 |
-
def save_geotiff(image, output_path: str, meta: dict):
|
93 |
-
""" Save multi-band image in Geotiff file.
|
94 |
-
Args:
|
95 |
-
image: np.ndarray with shape (bands, height, width)
|
96 |
-
output_path: path where to save the image
|
97 |
-
meta: dict with meta info.
|
98 |
-
"""
|
99 |
-
|
100 |
-
with rasterio.open(output_path, "w", **meta) as dest:
|
101 |
-
for i in range(image.shape[0]):
|
102 |
-
dest.write(image[i, :, :], i + 1)
|
103 |
-
|
104 |
-
return
|
105 |
-
|
106 |
-
|
107 |
-
def _convert_np_uint8(float_image: torch.Tensor):
|
108 |
-
|
109 |
-
image = float_image.numpy() * 255.0
|
110 |
-
image = image.astype(dtype=np.uint8)
|
111 |
-
image = image.transpose((1, 2, 0))
|
112 |
-
|
113 |
-
return image
|
114 |
-
|
115 |
-
|
116 |
-
def load_example(file_paths: List[str], mean: List[float], std: List[float]):
|
117 |
-
""" Build an input example by loading images in *file_paths*.
|
118 |
-
Args:
|
119 |
-
file_paths: list of file paths .
|
120 |
-
mean: list containing mean values for each band in the images in *file_paths*.
|
121 |
-
std: list containing std values for each band in the images in *file_paths*.
|
122 |
-
Returns:
|
123 |
-
np.array containing created example
|
124 |
-
list of meta info for each image in *file_paths*
|
125 |
-
"""
|
126 |
-
|
127 |
-
imgs = []
|
128 |
-
metas = []
|
129 |
-
|
130 |
-
for file in file_paths:
|
131 |
-
img, meta = read_geotiff(file)
|
132 |
-
img = img[:6]*10000 if img[:6].mean() <= 2 else img[:6]
|
133 |
-
|
134 |
-
# Rescaling (don't normalize on nodata)
|
135 |
-
img = np.moveaxis(img, 0, -1) # channels last for rescaling
|
136 |
-
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
|
137 |
-
|
138 |
-
imgs.append(img)
|
139 |
-
metas.append(meta)
|
140 |
-
|
141 |
-
imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
|
142 |
-
imgs = np.moveaxis(imgs, -1, 0).astype('float32') # C, num_frames, H, W
|
143 |
-
imgs = np.expand_dims(imgs, axis=0) # add batch dim
|
144 |
-
|
145 |
-
return imgs, metas
|
146 |
-
|
147 |
-
|
148 |
-
def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: float, device: torch.device):
|
149 |
-
""" Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
|
150 |
-
Args:
|
151 |
-
model: MAE model to run.
|
152 |
-
input_data: torch.Tensor with shape (B, C, T, H, W).
|
153 |
-
mask_ratio: mask ratio to use.
|
154 |
-
device: device where model should run.
|
155 |
-
Returns:
|
156 |
-
3 torch.Tensor with shape (B, C, T, H, W).
|
157 |
-
"""
|
158 |
-
|
159 |
-
with torch.no_grad():
|
160 |
-
x = input_data.to(device)
|
161 |
-
|
162 |
-
_, pred, mask = model(x, mask_ratio)
|
163 |
-
|
164 |
-
# Create mask and prediction images (un-patchify)
|
165 |
-
mask_img = model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
|
166 |
-
pred_img = model.unpatchify(pred).detach().cpu()
|
167 |
-
|
168 |
-
# Mix visible and predicted patches
|
169 |
-
rec_img = input_data.clone()
|
170 |
-
rec_img[mask_img == 1] = pred_img[mask_img == 1] # binary mask: 0 is keep, 1 is remove
|
171 |
-
|
172 |
-
# Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
|
173 |
-
mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
|
174 |
-
|
175 |
-
return rec_img, mask_img
|
176 |
-
|
177 |
-
|
178 |
-
def save_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data):
|
179 |
-
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
180 |
-
Args:
|
181 |
-
input_img: input torch.Tensor with shape (C, T, H, W).
|
182 |
-
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
183 |
-
mask_img: mask torch.Tensor with shape (C, T, H, W).
|
184 |
-
channels: list of indices representing RGB channels.
|
185 |
-
mean: list of mean values for each band.
|
186 |
-
std: list of std values for each band.
|
187 |
-
output_dir: directory where to save outputs.
|
188 |
-
meta_data: list of dicts with geotiff meta info.
|
189 |
-
"""
|
190 |
-
|
191 |
-
for t in range(input_img.shape[1]):
|
192 |
-
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
|
193 |
-
new_img=rec_img[:, t, :, :],
|
194 |
-
channels=channels, data_mean=mean,
|
195 |
-
data_std=std)
|
196 |
-
|
197 |
-
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
198 |
-
|
199 |
-
# Saving images
|
200 |
-
|
201 |
-
save_geotiff(image=_convert_np_uint8(rgb_orig),
|
202 |
-
output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
|
203 |
-
meta=meta_data[t])
|
204 |
-
|
205 |
-
save_geotiff(image=_convert_np_uint8(rgb_pred),
|
206 |
-
output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
|
207 |
-
meta=meta_data[t])
|
208 |
-
|
209 |
-
save_geotiff(image=_convert_np_uint8(rgb_mask),
|
210 |
-
output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
|
211 |
-
meta=meta_data[t])
|
212 |
-
|
213 |
|
214 |
def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
|
215 |
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
@@ -230,24 +43,31 @@ def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
|
|
230 |
for t in range(input_img.shape[1]):
|
231 |
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
|
232 |
new_img=rec_img[:, t, :, :],
|
233 |
-
channels=channels,
|
234 |
-
|
|
|
235 |
|
236 |
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
237 |
|
238 |
# extract images
|
239 |
-
rgb_orig_list.append(_convert_np_uint8(rgb_orig))
|
240 |
-
rgb_mask_list.append(_convert_np_uint8(rgb_mask))
|
241 |
-
rgb_pred_list.append(_convert_np_uint8(rgb_pred))
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list
|
244 |
|
245 |
return outputs
|
246 |
|
247 |
|
248 |
-
def predict_on_images(data_files: list,
|
249 |
-
|
250 |
-
|
251 |
try:
|
252 |
data_files = [x.name for x in data_files]
|
253 |
print('Path extracted from example')
|
@@ -257,24 +77,18 @@ def predict_on_images(data_files: list, mask_ratio: float, yaml_file_path: str,
|
|
257 |
# Get parameters --------
|
258 |
print('This is the printout', data_files)
|
259 |
|
260 |
-
with open(
|
261 |
-
|
262 |
-
|
263 |
-
model_params = params["model_args"]
|
264 |
-
# data related
|
265 |
-
train_params = params["train_params"]
|
266 |
-
num_frames = model_params['num_frames']
|
267 |
-
img_size = model_params['img_size']
|
268 |
-
bands = train_params['bands']
|
269 |
-
mean = train_params['data_mean']
|
270 |
-
std = train_params['data_std']
|
271 |
|
272 |
batch_size = 8
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
# We must have *num_frames* files to build one example!
|
277 |
-
assert len(data_files) == num_frames, "File list must be equal to expected number of frames."
|
278 |
|
279 |
if torch.cuda.is_available():
|
280 |
device = torch.device('cuda')
|
@@ -289,16 +103,23 @@ def predict_on_images(data_files: list, mask_ratio: float, yaml_file_path: str,
|
|
289 |
|
290 |
# Create model and load checkpoint -------------------------------------------------------------
|
291 |
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
294 |
|
295 |
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
296 |
print(f"\n--> Model has {total_params:,} parameters.\n")
|
297 |
|
298 |
model.to(device)
|
299 |
|
300 |
-
state_dict = torch.load(checkpoint, map_location=device)
|
301 |
-
|
|
|
|
|
|
|
|
|
302 |
print(f"Loaded checkpoint from {checkpoint}")
|
303 |
|
304 |
# Running model --------------------------------------------------------------------------------
|
@@ -348,37 +169,35 @@ def predict_on_images(data_files: list, mask_ratio: float, yaml_file_path: str,
|
|
348 |
for d in meta_data:
|
349 |
d.update(count=3, dtype='uint8', compress='lzw', nodata=0)
|
350 |
|
351 |
-
# save_rgb_imgs(batch[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
|
352 |
-
# channels, mean, std, output_dir, meta_data)
|
353 |
-
|
354 |
outputs = extract_rgb_imgs(batch_full[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
|
355 |
channels, mean, std)
|
356 |
|
357 |
-
|
358 |
print("Done!")
|
359 |
|
360 |
return outputs
|
361 |
|
362 |
|
|
|
363 |
|
|
|
364 |
|
365 |
-
|
|
|
|
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
return example_list
|
372 |
-
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
The user needs to provide three HLS geotiff images, including the following channels in reflectance units: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
|
380 |
|
381 |
-
|
|
|
382 |
''')
|
383 |
with gr.Row():
|
384 |
with gr.Column():
|
@@ -386,73 +205,55 @@ Check out our newest model: [Prithvi-EO-2.0-Demo](https://huggingface.co/spaces/
|
|
386 |
# inp_slider = gr.Slider(0, 100, value=50, label="Mask ratio", info="Choose ratio of masking between 0 and 100", elem_id='slider'),
|
387 |
btn = gr.Button("Submit")
|
388 |
with gr.Row():
|
389 |
-
gr.Markdown(value='##
|
390 |
-
with gr.Row():
|
391 |
-
gr.Markdown(value='T1')
|
392 |
-
gr.Markdown(value='T2')
|
393 |
-
gr.Markdown(value='T3')
|
394 |
-
with gr.Row():
|
395 |
-
out1_orig_t1=gr.Image(image_mode='RGB')
|
396 |
-
out2_orig_t2 = gr.Image(image_mode='RGB')
|
397 |
-
out3_orig_t3 = gr.Image(image_mode='RGB')
|
398 |
-
with gr.Row():
|
399 |
gr.Markdown(value='## Masked images')
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
btn.click(fn=func,
|
421 |
-
# inputs=[inp_files, inp_slider],
|
422 |
inputs=inp_files,
|
423 |
-
outputs=
|
424 |
-
|
425 |
-
out3_orig_t3,
|
426 |
-
out4_masked_t1,
|
427 |
-
out5_masked_t2,
|
428 |
-
out6_masked_t3,
|
429 |
-
out7_pred_t1,
|
430 |
-
out8_pred_t2,
|
431 |
-
out9_pred_t3])
|
432 |
with gr.Row():
|
433 |
-
gr.Examples(examples=[[[
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
out8_pred_t2,
|
451 |
-
out9_pred_t3],
|
452 |
-
# preprocess=preprocess_example,
|
453 |
-
fn=func,
|
454 |
-
cache_examples=True
|
455 |
)
|
456 |
-
|
457 |
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
import os
|
|
|
3 |
import torch
|
4 |
import yaml
|
5 |
+
import numpy as np
|
|
|
|
|
6 |
import gradio as gr
|
7 |
+
from einops import rearrange
|
8 |
from functools import partial
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
+
# pull files from hub
|
12 |
+
token = os.environ.get("HF_TOKEN", None)
|
13 |
+
config_path = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-1.0-100M",
|
14 |
+
filename="config.json", token=token)
|
15 |
+
checkpoint = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-1.0-100M",
|
16 |
+
filename='Prithvi_EO_V1_100M.pt', token=token)
|
17 |
+
model_def = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-1.0-100M",
|
18 |
+
filename='prithvi_mae.py', token=token)
|
19 |
+
model_inference = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-1.0-100M",
|
20 |
+
filename='inference.py', token=token)
|
21 |
+
os.system(f'cp {model_def} .')
|
22 |
+
os.system(f'cp {model_inference} .')
|
23 |
|
24 |
+
from prithvi_mae import PrithviMAE
|
25 |
+
from inference import process_channel_group, _convert_np_uint8, load_example, run_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
|
28 |
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
|
|
43 |
for t in range(input_img.shape[1]):
|
44 |
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
|
45 |
new_img=rec_img[:, t, :, :],
|
46 |
+
channels=channels,
|
47 |
+
mean=mean,
|
48 |
+
std=std)
|
49 |
|
50 |
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
51 |
|
52 |
# extract images
|
53 |
+
rgb_orig_list.append(_convert_np_uint8(rgb_orig).transpose(1, 2, 0))
|
54 |
+
rgb_mask_list.append(_convert_np_uint8(rgb_mask).transpose(1, 2, 0))
|
55 |
+
rgb_pred_list.append(_convert_np_uint8(rgb_pred).transpose(1, 2, 0))
|
56 |
+
|
57 |
+
# Add white dummy image values for missing timestamps
|
58 |
+
dummy = np.ones((20, 20), dtype=np.uint8) * 255
|
59 |
+
num_dummies = 3 - len(rgb_orig_list)
|
60 |
+
if num_dummies:
|
61 |
+
rgb_orig_list.extend([dummy] * num_dummies)
|
62 |
+
rgb_mask_list.extend([dummy] * num_dummies)
|
63 |
+
rgb_pred_list.extend([dummy] * num_dummies)
|
64 |
+
|
65 |
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list
|
66 |
|
67 |
return outputs
|
68 |
|
69 |
|
70 |
+
def predict_on_images(data_files: list, config_path: str, checkpoint: str, mask_ratio: float = None):
|
|
|
|
|
71 |
try:
|
72 |
data_files = [x.name for x in data_files]
|
73 |
print('Path extracted from example')
|
|
|
77 |
# Get parameters --------
|
78 |
print('This is the printout', data_files)
|
79 |
|
80 |
+
with open(config_path, 'r') as f:
|
81 |
+
config = yaml.safe_load(f)['pretrained_cfg']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
batch_size = 8
|
84 |
+
bands = config['bands']
|
85 |
+
num_frames = len(data_files)
|
86 |
+
mean = config['mean']
|
87 |
+
std = config['std']
|
88 |
+
img_size = config['img_size']
|
89 |
+
mask_ratio = mask_ratio or config['mask_ratio']
|
90 |
|
91 |
+
assert num_frames <= 3, "Demo only supports up to three timestamps"
|
|
|
|
|
|
|
92 |
|
93 |
if torch.cuda.is_available():
|
94 |
device = torch.device('cuda')
|
|
|
103 |
|
104 |
# Create model and load checkpoint -------------------------------------------------------------
|
105 |
|
106 |
+
config.update(
|
107 |
+
num_frames=num_frames,
|
108 |
+
)
|
109 |
+
|
110 |
+
model = PrithviMAE(**config)
|
111 |
|
112 |
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
113 |
print(f"\n--> Model has {total_params:,} parameters.\n")
|
114 |
|
115 |
model.to(device)
|
116 |
|
117 |
+
state_dict = torch.load(checkpoint, map_location=device, weights_only=False)
|
118 |
+
# discard fixed pos_embedding weight
|
119 |
+
for k in list(state_dict.keys()):
|
120 |
+
if 'pos_embed' in k:
|
121 |
+
del state_dict[k]
|
122 |
+
model.load_state_dict(state_dict, strict=False)
|
123 |
print(f"Loaded checkpoint from {checkpoint}")
|
124 |
|
125 |
# Running model --------------------------------------------------------------------------------
|
|
|
169 |
for d in meta_data:
|
170 |
d.update(count=3, dtype='uint8', compress='lzw', nodata=0)
|
171 |
|
|
|
|
|
|
|
172 |
outputs = extract_rgb_imgs(batch_full[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
|
173 |
channels, mean, std)
|
174 |
|
|
|
175 |
print("Done!")
|
176 |
|
177 |
return outputs
|
178 |
|
179 |
|
180 |
+
run_inference = partial(predict_on_images, config_path=config_path,checkpoint=checkpoint)
|
181 |
|
182 |
+
with gr.Blocks() as demo:
|
183 |
|
184 |
+
gr.Markdown(value='# Prithvi-EO-1.0 image reconstruction demo')
|
185 |
+
gr.Markdown(value='''
|
186 |
+
Check out our newest model: [Prithvi-EO-2.0-Demo](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-EO-2.0-Demo).
|
187 |
|
188 |
+
Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data.
|
189 |
+
Particularly, the model adopts a self-supervised encoder developed with a ViT architecture and Masked AutoEncoder learning strategy, with a MSE as a loss function.
|
190 |
+
The model includes spatial attention across multiple patchies and also temporal attention for each patch.
|
191 |
+
More info about the model and its weights are available [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M).\n
|
|
|
|
|
192 |
|
193 |
+
This demo showcases the image reconstruction over one to three timestamps.
|
194 |
+
The model randomly masks out some proportion of the images and reconstructs them based on the not masked portion of the images.
|
195 |
+
The reconstructed images are merged with the visible unmasked patches.
|
196 |
+
We recommend submitting images of size 224 to ~1000 pixels for faster processing time.
|
197 |
+
Images bigger than 224x224 are processed using a sliding window approach which can lead to artefacts between patches.\n
|
|
|
198 |
|
199 |
+
The user needs to provide the HLS geotiff images, including the following channels in reflectance units: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
|
200 |
+
Some example images are provided at the end of this page.
|
201 |
''')
|
202 |
with gr.Row():
|
203 |
with gr.Column():
|
|
|
205 |
# inp_slider = gr.Slider(0, 100, value=50, label="Mask ratio", info="Choose ratio of masking between 0 and 100", elem_id='slider'),
|
206 |
btn = gr.Button("Submit")
|
207 |
with gr.Row():
|
208 |
+
gr.Markdown(value='## Input time series')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
gr.Markdown(value='## Masked images')
|
210 |
+
gr.Markdown(value='## Reconstructed images*')
|
211 |
+
|
212 |
+
original = []
|
213 |
+
masked = []
|
214 |
+
predicted = []
|
215 |
+
timestamps = []
|
216 |
+
for t in range(3):
|
217 |
+
timestamps.append(gr.Column(visible=t == 0))
|
218 |
+
with timestamps[t]:
|
219 |
+
#with gr.Row():
|
220 |
+
# gr.Markdown(value=f"Timestamp {t+1}")
|
221 |
+
with gr.Row():
|
222 |
+
original.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False))
|
223 |
+
masked.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False))
|
224 |
+
predicted.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False))
|
225 |
+
|
226 |
+
gr.Markdown(value='\* The reconstructed images include the ground truth unmasked patches.')
|
227 |
+
|
228 |
+
btn.click(fn=run_inference,
|
|
|
|
|
|
|
229 |
inputs=inp_files,
|
230 |
+
outputs=original + masked + predicted)
|
231 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
with gr.Row():
|
233 |
+
gr.Examples(examples=[[[
|
234 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
235 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
236 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")
|
237 |
+
]],[[
|
238 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T17RMP.2018004T155509.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
239 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T17RMP.2018036T155452.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
240 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T17RMP.2018068T155438.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")
|
241 |
+
]],[[
|
242 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018029T154533.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
243 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
244 |
+
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")
|
245 |
+
]]],
|
246 |
+
inputs=inp_files,
|
247 |
+
outputs=original + masked + predicted,
|
248 |
+
fn=run_inference,
|
249 |
+
cache_examples=True
|
|
|
|
|
|
|
|
|
|
|
250 |
)
|
|
|
251 |
|
252 |
+
def update_visibility(files):
|
253 |
+
timestamps = [gr.Column(visible=t < len(files)) for t in range(3)]
|
254 |
+
|
255 |
+
return timestamps
|
256 |
+
|
257 |
+
inp_files.change(update_visibility, inp_files, timestamps)
|
258 |
+
|
259 |
+
demo.launch() # share=True, ssr_mode=False
|
HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|
HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|
HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|
HLS.L30.T17RMP.2018004T155509.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T17RMP.2018004T155509.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|
HLS.L30.T17RMP.2018036T155452.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T17RMP.2018036T155452.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|
HLS.L30.T17RMP.2018068T155438.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T17RMP.2018068T155438.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|
HLS.L30.T18TVL.2018029T154533.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T18TVL.2018029T154533.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|
HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|
HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif β examples/HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
RENAMED
File without changes
|