Paolo-Fraccaro
commited on
Commit
·
5bac81d
1
Parent(s):
dab7700
update app
Browse files- .gitattributes +1 -0
- app.py +16 -59
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.tif* filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -5,11 +5,7 @@ config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temp
|
|
5 |
filename="multi_temporal_crop_classification_Prithvi_100M.py",
|
6 |
token=os.environ.get("token"))
|
7 |
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
|
8 |
-
<<<<<<< HEAD
|
9 |
filename='multi_temporal_crop_classification_Prithvi_100M.pth',
|
10 |
-
=======
|
11 |
-
filename='multi_temporal_crop_classification_best_mIoU_epoch_66.pth',
|
12 |
-
>>>>>>> 889a651 (add files)
|
13 |
token=os.environ.get("token"))
|
14 |
##########
|
15 |
import argparse
|
@@ -40,6 +36,15 @@ import pdb
|
|
40 |
|
41 |
import matplotlib.pyplot as plt
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def open_tiff(fname):
|
45 |
|
@@ -137,7 +142,6 @@ def inference_on_file(target_image, model, custom_test_pipeline):
|
|
137 |
|
138 |
# output_image = target_image.replace('.tif', '_pred.tif')
|
139 |
time_taken=-1
|
140 |
-
<<<<<<< HEAD
|
141 |
st = time.time()
|
142 |
print('Running inference...')
|
143 |
result = inference_segmentor(model, target_image, custom_test_pipeline)
|
@@ -146,9 +150,9 @@ def inference_on_file(target_image, model, custom_test_pipeline):
|
|
146 |
##### get metadata mask
|
147 |
mask = open_tiff(target_image)
|
148 |
# rgb = mask[[2, 1, 0], :, :].transpose((1,2,0))
|
149 |
-
rgb1 = mask[[2, 1, 0], :, :].transpose((1,2,0))
|
150 |
-
rgb2 = mask[[8, 7, 6], :, :].transpose((1,2,0))
|
151 |
-
rgb3 = mask[[14, 13, 12], :, :].transpose((1,2,0))
|
152 |
meta = get_meta(target_image)
|
153 |
mask = np.where(mask == meta['nodata'], 1, 0)
|
154 |
mask = np.max(mask, axis=0)[None]
|
@@ -165,43 +169,11 @@ def inference_on_file(target_image, model, custom_test_pipeline):
|
|
165 |
et = time.time()
|
166 |
time_taken = np.round(et - st, 1)
|
167 |
print(f'Inference completed in {str(time_taken)} seconds')
|
|
|
|
|
|
|
168 |
|
169 |
-
return rgb1,rgb2,rgb3,
|
170 |
-
=======
|
171 |
-
try:
|
172 |
-
st = time.time()
|
173 |
-
print('Running inference...')
|
174 |
-
result = inference_segmentor(model, target_image, custom_test_pipeline)
|
175 |
-
print("Output has shape: " + str(result[0].shape))
|
176 |
-
|
177 |
-
##### get metadata mask
|
178 |
-
mask = open_tiff(target_image)
|
179 |
-
# rgb = mask[[2, 1, 0], :, :].transpose((1,2,0))
|
180 |
-
rgb1 = mask[[2, 1, 0], :, :].transpose((1,2,0))
|
181 |
-
rgb2 = mask[[8, 7, 6], :, :].transpose((1,2,0))
|
182 |
-
rgb3 = mask[[14, 13, 12], :, :].transpose((1,2,0))
|
183 |
-
meta = get_meta(target_image)
|
184 |
-
mask = np.where(mask == meta['nodata'], 1, 0)
|
185 |
-
mask = np.max(mask, axis=0)[None]
|
186 |
-
|
187 |
-
result[0] = np.where(mask == 1, -1, result[0])
|
188 |
-
|
189 |
-
##### Save file to disk
|
190 |
-
meta["count"] = 1
|
191 |
-
meta["dtype"] = "int16"
|
192 |
-
meta["compress"] = "lzw"
|
193 |
-
meta["nodata"] = -1
|
194 |
-
print('Saving output...')
|
195 |
-
# write_tiff(result[0], output_image, meta)
|
196 |
-
et = time.time()
|
197 |
-
time_taken = np.round(et - st, 1)
|
198 |
-
print(f'Inference completed in {str(time_taken)} seconds')
|
199 |
-
|
200 |
-
except:
|
201 |
-
print(f'Error on image {target_image} \nContinue to next input')
|
202 |
-
|
203 |
-
return rgb, result[0][0]*255
|
204 |
-
>>>>>>> 889a651 (add files)
|
205 |
|
206 |
def process_test_pipeline(custom_test_pipeline, bands=None):
|
207 |
|
@@ -224,10 +196,6 @@ def process_test_pipeline(custom_test_pipeline, bands=None):
|
|
224 |
|
225 |
return custom_test_pipeline
|
226 |
|
227 |
-
<<<<<<< HEAD
|
228 |
-
|
229 |
-
=======
|
230 |
-
>>>>>>> 889a651 (add files)
|
231 |
config = Config.fromfile(config_path)
|
232 |
config.model.backbone.pretrained=None
|
233 |
model = init_segmentor(config, ckpt, device='cpu')
|
@@ -260,16 +228,6 @@ with gr.Blocks() as demo:
|
|
260 |
|
261 |
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
262 |
|
263 |
-
<<<<<<< HEAD
|
264 |
-
# with gr.Row():
|
265 |
-
# gr.Examples(examples=["chip_102_345_merged.tif", "chip_104_104_merged.tif", "chip_109_421_merged.tif"],
|
266 |
-
# inputs=inp,
|
267 |
-
# outputs=[inp1, inp2, inp3, out],
|
268 |
-
# preprocess=preprocess_example,
|
269 |
-
# fn=func,
|
270 |
-
# cache_examples=True,
|
271 |
-
# )
|
272 |
-
=======
|
273 |
with gr.Row():
|
274 |
gr.Examples(examples=["chip_102_345_merged.tif",
|
275 |
"chip_104_104_merged.tif",
|
@@ -280,6 +238,5 @@ with gr.Blocks() as demo:
|
|
280 |
fn=func,
|
281 |
cache_examples=True,
|
282 |
)
|
283 |
-
>>>>>>> 889a651 (add files)
|
284 |
|
285 |
demo.launch()
|
|
|
5 |
filename="multi_temporal_crop_classification_Prithvi_100M.py",
|
6 |
token=os.environ.get("token"))
|
7 |
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
|
|
|
8 |
filename='multi_temporal_crop_classification_Prithvi_100M.pth',
|
|
|
|
|
|
|
9 |
token=os.environ.get("token"))
|
10 |
##########
|
11 |
import argparse
|
|
|
36 |
|
37 |
import matplotlib.pyplot as plt
|
38 |
|
39 |
+
from skimage import exposure
|
40 |
+
|
41 |
+
def stretch_rgb(rgb):
|
42 |
+
|
43 |
+
ls_pct=0
|
44 |
+
pLow, pHigh = np.percentile(rgb1[~np.isnan(rgb1)], (ls_pct,100-ls_pct))
|
45 |
+
img_rescale = exposure.rescale_intensity(rgb1, in_range=(pLow,pHigh))
|
46 |
+
|
47 |
+
return img_rescale
|
48 |
|
49 |
def open_tiff(fname):
|
50 |
|
|
|
142 |
|
143 |
# output_image = target_image.replace('.tif', '_pred.tif')
|
144 |
time_taken=-1
|
|
|
145 |
st = time.time()
|
146 |
print('Running inference...')
|
147 |
result = inference_segmentor(model, target_image, custom_test_pipeline)
|
|
|
150 |
##### get metadata mask
|
151 |
mask = open_tiff(target_image)
|
152 |
# rgb = mask[[2, 1, 0], :, :].transpose((1,2,0))
|
153 |
+
rgb1 = stretch_rgb((mask[[2, 1, 0], :, :].transpose((1,2,0))/10000*255).astype(np.unint8))
|
154 |
+
rgb2 = stretch_rgb((mask[[8, 7, 6], :, :].transpose((1,2,0))/10000*255).astype(np.unint8))
|
155 |
+
rgb3 = stretch_rgb((mask[[14, 13, 12], :, :].transpose((1,2,0))/10000*255).astype(np.unint8))
|
156 |
meta = get_meta(target_image)
|
157 |
mask = np.where(mask == meta['nodata'], 1, 0)
|
158 |
mask = np.max(mask, axis=0)[None]
|
|
|
169 |
et = time.time()
|
170 |
time_taken = np.round(et - st, 1)
|
171 |
print(f'Inference completed in {str(time_taken)} seconds')
|
172 |
+
|
173 |
+
output = (result[0][0]*18).astype(np.uint8)
|
174 |
+
output = np.vstack([output[None], output[None], output[None]])
|
175 |
|
176 |
+
return rgb1,rgb2,rgb3,output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
def process_test_pipeline(custom_test_pipeline, bands=None):
|
179 |
|
|
|
196 |
|
197 |
return custom_test_pipeline
|
198 |
|
|
|
|
|
|
|
|
|
199 |
config = Config.fromfile(config_path)
|
200 |
config.model.backbone.pretrained=None
|
201 |
model = init_segmentor(config, ckpt, device='cpu')
|
|
|
228 |
|
229 |
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
with gr.Row():
|
232 |
gr.Examples(examples=["chip_102_345_merged.tif",
|
233 |
"chip_104_104_merged.tif",
|
|
|
238 |
fn=func,
|
239 |
cache_examples=True,
|
240 |
)
|
|
|
241 |
|
242 |
demo.launch()
|